First-Principles Insights into Structural, Electronic, Elastic, and Optical Behavior of AlGeX3 (X = Cl, Br) Perovskites

IF 1.5 3区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR
Sudipta Dash, Subhashree Mohanty, Gopinath Palai
{"title":"First-Principles Insights into Structural, Electronic, Elastic, and Optical Behavior of AlGeX3 (X = Cl, Br) Perovskites","authors":"Sudipta Dash,&nbsp;Subhashree Mohanty,&nbsp;Gopinath Palai","doi":"10.1134/S0036023625601199","DOIUrl":null,"url":null,"abstract":"<p>Halide perovskites have drawn considerable attention for their exceptional properties and the flexibility to fine-tune their composition. In this study, we use first-principles density functional theory (DFT) calculations with the WIEN2K code to investigate the structural, electronic, optical, and mechanical properties of cubic halide perovskites AlGeX<sub>3</sub> (X = Cl, Br), exploring their potential for optoelectronic applications. Replacing Cl with Br alters the lattice parameters and unit cell volume, highlighting the role of halogen chemistry in shaping structural behavior. Electronic structure analysis confirms a direct bandgap, with values of 2.13 eV for AlGeCl<sub>3</sub> and 1.96 eV for AlGeBr<sub>3</sub>, making them suitable for ultraviolet optoelectronics. Optical results reveal strong absorption, excellent electrical conductivity, and low reflectivity, making these materials promising for light-harvesting applications. Mechanical assessments, including bulk modulus (<i>B</i>), shear modulus (<i>G</i>), Young’s modulus (<i>E</i>), anisotropic factor (<i>A</i>), Poisson’s ratio, and Pugh’s ratio (<i>B</i>/<i>G</i>), confirm that these materials maintain a stable balance between stiffness and ductility. Additionally, the Debye temperature (θ<sub>D</sub>) suggests strong thermal resilience, while formation energy calculations reinforce their thermodynamic stability. Overall, AlGeX<sub>3</sub> (X = Cl, Br) emerges as a strong candidate for next-generation photodetectors and high-performance optoelectronic devices.</p>","PeriodicalId":762,"journal":{"name":"Russian Journal of Inorganic Chemistry","volume":"70 7","pages":"1100 - 1108"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S0036023625601199","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Halide perovskites have drawn considerable attention for their exceptional properties and the flexibility to fine-tune their composition. In this study, we use first-principles density functional theory (DFT) calculations with the WIEN2K code to investigate the structural, electronic, optical, and mechanical properties of cubic halide perovskites AlGeX3 (X = Cl, Br), exploring their potential for optoelectronic applications. Replacing Cl with Br alters the lattice parameters and unit cell volume, highlighting the role of halogen chemistry in shaping structural behavior. Electronic structure analysis confirms a direct bandgap, with values of 2.13 eV for AlGeCl3 and 1.96 eV for AlGeBr3, making them suitable for ultraviolet optoelectronics. Optical results reveal strong absorption, excellent electrical conductivity, and low reflectivity, making these materials promising for light-harvesting applications. Mechanical assessments, including bulk modulus (B), shear modulus (G), Young’s modulus (E), anisotropic factor (A), Poisson’s ratio, and Pugh’s ratio (B/G), confirm that these materials maintain a stable balance between stiffness and ductility. Additionally, the Debye temperature (θD) suggests strong thermal resilience, while formation energy calculations reinforce their thermodynamic stability. Overall, AlGeX3 (X = Cl, Br) emerges as a strong candidate for next-generation photodetectors and high-performance optoelectronic devices.

Abstract Image

Abstract Image

AlGeX3 (X = Cl, Br)钙钛矿结构、电子、弹性和光学行为的第一性原理研究
卤化物钙钛矿因其特殊的性质和微调其组成的灵活性而引起了相当大的关注。在这项研究中,我们使用第一性原理密度泛函理论(DFT)计算和WIEN2K代码来研究立方卤化物钙钛矿AlGeX3 (X = Cl, Br)的结构,电子,光学和力学性能,探索其光电子应用的潜力。用Br取代Cl改变了晶格参数和单元胞体积,突出了卤素化学在塑造结构行为中的作用。电子结构分析证实了直接带隙,AlGeCl3的值为2.13 eV, AlGeBr3的值为1.96 eV,使它们适合用于紫外光电子学。光学结果显示强吸收、优异的导电性和低反射率,使这些材料有希望用于光收集应用。力学评估,包括体积模量(B)、剪切模量(G)、杨氏模量(E)、各向异性因子(A)、泊松比和Pugh比(B/G),证实了这些材料在刚度和延性之间保持稳定的平衡。此外,德拜温度(θD)表明其具有很强的热弹性,而地层能量计算则增强了其热力学稳定性。总的来说,AlGeX3 (X = Cl, Br)是下一代光电探测器和高性能光电器件的有力候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Journal of Inorganic Chemistry
Russian Journal of Inorganic Chemistry 化学-无机化学与核化学
CiteScore
3.10
自引率
38.10%
发文量
237
审稿时长
3 months
期刊介绍: Russian Journal of Inorganic Chemistry is a monthly periodical that covers the following topics of research: the synthesis and properties of inorganic compounds, coordination compounds, physicochemical analysis of inorganic systems, theoretical inorganic chemistry, physical methods of investigation, chemistry of solutions, inorganic materials, and nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信