On the Application of Ball Indentation Test to Characterize Dynamic Strain Aging in Alloy 617M

IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
J. Ganesh Kumar, J. Christopher, M. Divya, G. V. Prasad Reddy
{"title":"On the Application of Ball Indentation Test to Characterize Dynamic Strain Aging in Alloy 617M","authors":"J. Ganesh Kumar,&nbsp;J. Christopher,&nbsp;M. Divya,&nbsp;G. V. Prasad Reddy","doi":"10.1007/s11665-025-11432-x","DOIUrl":null,"url":null,"abstract":"<div><p>The dynamic strain aging (DSA) behavior of Alloy 617M was exhibited from the compressive ball indentation (BI) tests using spherical indenter in the temperature regime 773-973 K. Type B and B + C serrations were incidentally observed in the load depth of indentation curves measured from BI tests, suggesting that DSA caused by the interaction of dislocations with solute atoms is the dominant mechanism in this temperature range. Notably, the modulus-compensated yield and ultimate tensile strengths were found to exhibit plateaus or even increasing trend with temperature above 673 K. Similarly, the strength coefficient and strain hardening exponent were observed to display anomalous behavior above 673 K. The DSA was further examined by varying the cross-head velocity (indenter speed) in the range 0.003-0.010 mm/s. Interestingly, negative strain rate sensitivity, which was another signature of DSA, was confirmed when the true stress decreased with increasing effective strain rate. The range of temperature of occurrence of DSA as observed from BI tests was similar to that reported from uniaxial tension test, thus signifying the applicability of BI technique to characterize the DSA behavior of materials.</p></div>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"34 16","pages":"17144 - 17152"},"PeriodicalIF":2.0000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11665-025-11432-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11665-025-11432-x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The dynamic strain aging (DSA) behavior of Alloy 617M was exhibited from the compressive ball indentation (BI) tests using spherical indenter in the temperature regime 773-973 K. Type B and B + C serrations were incidentally observed in the load depth of indentation curves measured from BI tests, suggesting that DSA caused by the interaction of dislocations with solute atoms is the dominant mechanism in this temperature range. Notably, the modulus-compensated yield and ultimate tensile strengths were found to exhibit plateaus or even increasing trend with temperature above 673 K. Similarly, the strength coefficient and strain hardening exponent were observed to display anomalous behavior above 673 K. The DSA was further examined by varying the cross-head velocity (indenter speed) in the range 0.003-0.010 mm/s. Interestingly, negative strain rate sensitivity, which was another signature of DSA, was confirmed when the true stress decreased with increasing effective strain rate. The range of temperature of occurrence of DSA as observed from BI tests was similar to that reported from uniaxial tension test, thus signifying the applicability of BI technique to characterize the DSA behavior of materials.

球压痕试验在617M合金动态应变时效表征中的应用
在773 ~ 973 K温度范围内,用球形压头进行了617M合金的动态应变时效(DSA)试验。在BI测试中测量的压痕曲线的载荷深度中,偶然观察到B型和B + C型锯齿,表明在该温度范围内,由位错与溶质原子相互作用引起的DSA是主要机制。值得注意的是,当温度高于673 K时,模量补偿屈服强度和极限抗拉强度呈现稳定甚至增加的趋势。同样,强度系数和应变硬化指数在673 K以上也表现出异常行为。通过改变十字头速度(压头速度)在0.003-0.010 mm/s范围内进一步检查DSA。有趣的是,当真实应力随有效应变率的增加而减小时,负应变率敏感性(DSA的另一个特征)得到了证实。从BI试验中观察到的DSA发生温度范围与单轴拉伸试验报告的温度范围相似,从而表明BI技术在表征材料DSA行为方面的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Engineering and Performance
Journal of Materials Engineering and Performance 工程技术-材料科学:综合
CiteScore
3.90
自引率
13.00%
发文量
1120
审稿时长
4.9 months
期刊介绍: ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance. The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication. Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信