{"title":"RoSR: A Novel Selective Retransmission FPGA Architecture for RDMA NICs","authors":"Mengting Zhang;Zhichuan Guo;Shining Sun","doi":"10.1109/LCA.2025.3594110","DOIUrl":null,"url":null,"abstract":"Remote Direct Memory Access (RDMA) enables low-latency datacenter networks but suffers from inefficient loss recovery using Go-Back-N (GBN). GBN retransmits entire packet windows, degrading Flow Completion Time (FCT) under congestion. We introduce RoSR, a novel selective retransmission architecture for Field-Programmable Gate Array (FPGA)-based RDMA NICs that supports hardware-accelerated direct writes of out-of-order (OoO) packets. RoSR supports efficient OoO packet reception and enables fine-grained retransmission using a dynamic shared bitmap for packet tracking. By extending the RDMA over Converged Ethernet version 2 (RoCEv2) packet format, RoSR facilitates selective retransmission. It triggers retransmissions via timeouts using bitmap blocks and introduces new Nack-bitmap and rd-req-bitmap messages for loss reporting. Under 1% packet loss, RoSR achieves up to 13.5× (RDMA Write) and 15.6× (RDMA Read) higher throughput than Xilinx ERNIC. In NS-3 simulations using the HPCC RDMA stack, RoSR reduces FCT slowdown by 3× to 6× compared to GBN across various packet loss rates, congestion control algorithms (DCQCN, HPCC, Timely), and traffic patterns, while maintaining robustness under high round-trip time (RTT) conditions.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"24 2","pages":"269-272"},"PeriodicalIF":1.4000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11106222/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Remote Direct Memory Access (RDMA) enables low-latency datacenter networks but suffers from inefficient loss recovery using Go-Back-N (GBN). GBN retransmits entire packet windows, degrading Flow Completion Time (FCT) under congestion. We introduce RoSR, a novel selective retransmission architecture for Field-Programmable Gate Array (FPGA)-based RDMA NICs that supports hardware-accelerated direct writes of out-of-order (OoO) packets. RoSR supports efficient OoO packet reception and enables fine-grained retransmission using a dynamic shared bitmap for packet tracking. By extending the RDMA over Converged Ethernet version 2 (RoCEv2) packet format, RoSR facilitates selective retransmission. It triggers retransmissions via timeouts using bitmap blocks and introduces new Nack-bitmap and rd-req-bitmap messages for loss reporting. Under 1% packet loss, RoSR achieves up to 13.5× (RDMA Write) and 15.6× (RDMA Read) higher throughput than Xilinx ERNIC. In NS-3 simulations using the HPCC RDMA stack, RoSR reduces FCT slowdown by 3× to 6× compared to GBN across various packet loss rates, congestion control algorithms (DCQCN, HPCC, Timely), and traffic patterns, while maintaining robustness under high round-trip time (RTT) conditions.
期刊介绍:
IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.