Guided modes of helical waveguides

IF 2.5 3区 物理与天体物理 Q2 ACOUSTICS
Jay Gopalakrishnan, Michael Neunteufel
{"title":"Guided modes of helical waveguides","authors":"Jay Gopalakrishnan,&nbsp;Michael Neunteufel","doi":"10.1016/j.wavemoti.2025.103621","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies guided transverse scalar modes propagating through helically coiled waveguides. Modeling the modes as solutions of the Helmholtz equation within the three-dimensional (3D) waveguide geometry, a propagation ansatz transforms the mode-finding problem into a 3D quadratic eigenproblem. Through an untwisting map, the problem is shown to be equivalent to a 3D quadratic eigenproblem on a straightened configuration. Next, exploiting the constant torsion and curvature of the Frenet frame of a circular helix, the 3D eigenproblem is further reduced to a two-dimensional (2D) eigenproblem on the waveguide cross section. All three eigenproblems are numerically treated. As expected, significant computational savings are realized in the 2D model. A few nontrivial numerical techniques are needed to make the computation of modes within the 3D geometry feasible. They are presented along with a procedure to effectively filter out unwanted non-propagating eigenfunctions. Computational results show that the geometric effect of coiling is to shift the localization of guided modes away from the coiling center. The variations in modes as coiling pitch is changed are reported considering the example of a coiled optical fiber.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"139 ","pages":"Article 103621"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212525001325","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies guided transverse scalar modes propagating through helically coiled waveguides. Modeling the modes as solutions of the Helmholtz equation within the three-dimensional (3D) waveguide geometry, a propagation ansatz transforms the mode-finding problem into a 3D quadratic eigenproblem. Through an untwisting map, the problem is shown to be equivalent to a 3D quadratic eigenproblem on a straightened configuration. Next, exploiting the constant torsion and curvature of the Frenet frame of a circular helix, the 3D eigenproblem is further reduced to a two-dimensional (2D) eigenproblem on the waveguide cross section. All three eigenproblems are numerically treated. As expected, significant computational savings are realized in the 2D model. A few nontrivial numerical techniques are needed to make the computation of modes within the 3D geometry feasible. They are presented along with a procedure to effectively filter out unwanted non-propagating eigenfunctions. Computational results show that the geometric effect of coiling is to shift the localization of guided modes away from the coiling center. The variations in modes as coiling pitch is changed are reported considering the example of a coiled optical fiber.
螺旋波导的导模
本文研究了在螺旋螺旋波导中传播的波导横向标量模。将模式建模为三维波导几何结构中的亥姆霍兹方程的解,将寻模问题转换为三维二次特征问题。通过解扭曲映射,表明该问题等价于一个三维二次特征问题。接下来,利用螺旋结构的恒定扭转和曲率,将三维特征问题进一步简化为波导截面上的二维特征问题。所有三个特征问题都进行了数值处理。正如预期的那样,在2D模型中实现了显著的计算节省。为了使三维几何中的模态计算可行,需要一些重要的数值技术。它们与有效滤除不需要的非传播特征函数的过程一起提出。计算结果表明,卷取的几何效应是使导模的定位偏离卷取中心。本文以卷绕式光纤为例,报道了卷绕式光纤模式随螺距变化的变化规律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信