A. Aimi , G. Di Credico , H. Gimperlein , C. Guardasoni
{"title":"Adaptive time-domain boundary element methods for the wave equation with Neumann boundary conditions","authors":"A. Aimi , G. Di Credico , H. Gimperlein , C. Guardasoni","doi":"10.1016/j.camwa.2025.08.020","DOIUrl":null,"url":null,"abstract":"<div><div>This article investigates adaptive mesh refinement procedures for the time-domain wave equation with Neumann boundary conditions, formulated as an equivalent hypersingular boundary integral equation. Space-adaptive and time-adaptive versions of a space-time boundary element method are presented, based on a reliable a posteriori error estimate of residual type. Numerical experiments illustrate the performance of the proposed approach.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"198 ","pages":"Pages 196-213"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125003530","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This article investigates adaptive mesh refinement procedures for the time-domain wave equation with Neumann boundary conditions, formulated as an equivalent hypersingular boundary integral equation. Space-adaptive and time-adaptive versions of a space-time boundary element method are presented, based on a reliable a posteriori error estimate of residual type. Numerical experiments illustrate the performance of the proposed approach.
期刊介绍:
Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).