Yinglong Weng , Jianping Zhang , Kun Zhang , Yitong Lu , Tingting Huang , Yingbo Kang , Xiaotong Han , Jieshan Qiu
{"title":"Recent progress in functional carbon-based materials for advanced electrocatalysis","authors":"Yinglong Weng , Jianping Zhang , Kun Zhang , Yitong Lu , Tingting Huang , Yingbo Kang , Xiaotong Han , Jieshan Qiu","doi":"10.1016/S1872-2067(25)64749-8","DOIUrl":null,"url":null,"abstract":"<div><div>Functional carbon-based materials have become a key research direction in the field of advanced electrocatalysis due to their unique structure and properties. Various strategies have been proposed to design and synthesize high-performance carbon-based electrocatalysts. In this review, we comprehensively summarize the latest developments in carbon-based materials for advanced electrocatalysis, with particular emphasis on the structure design strategies and the intrinsic relationship between structure, activity, and performance. The functionalization of multi-dimensional carbon-based materials with enhanced electrocatalytic performance is first addressed. Next, the impact of electronic and structural engineering on the performance of carbon-based materials for electrocatalysis is discussed in terms of the advantages of different types of carbon-based materials in electrocatalytic applications. Finally, the prospects in areas such as precise tuning of functional carbon-based materials, the development of renewable carbon materials, the use of advanced characterization techniques and the promotion of smart manufacturing and responsiveness are highlighted.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"76 ","pages":"Pages 10-36"},"PeriodicalIF":17.7000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206725647498","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Functional carbon-based materials have become a key research direction in the field of advanced electrocatalysis due to their unique structure and properties. Various strategies have been proposed to design and synthesize high-performance carbon-based electrocatalysts. In this review, we comprehensively summarize the latest developments in carbon-based materials for advanced electrocatalysis, with particular emphasis on the structure design strategies and the intrinsic relationship between structure, activity, and performance. The functionalization of multi-dimensional carbon-based materials with enhanced electrocatalytic performance is first addressed. Next, the impact of electronic and structural engineering on the performance of carbon-based materials for electrocatalysis is discussed in terms of the advantages of different types of carbon-based materials in electrocatalytic applications. Finally, the prospects in areas such as precise tuning of functional carbon-based materials, the development of renewable carbon materials, the use of advanced characterization techniques and the promotion of smart manufacturing and responsiveness are highlighted.
期刊介绍:
The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.