Weihao Guo , Kapil Bharadwaj Bhagavathula , Kevin Adanty , Karyne N. Rabey , Simon Ouellet , Dan L. Romanyk , Lindsey Westover , James David Hogan
{"title":"Linking morphometric variations in human cranial bone to mechanical behavior using machine learning","authors":"Weihao Guo , Kapil Bharadwaj Bhagavathula , Kevin Adanty , Karyne N. Rabey , Simon Ouellet , Dan L. Romanyk , Lindsey Westover , James David Hogan","doi":"10.1016/j.jmbbm.2025.107165","DOIUrl":null,"url":null,"abstract":"<div><div>With the development of increasingly detailed imaging techniques, there is a need to update the methodology and evaluation criteria for bone analysis to understand the influence of bone microarchitecture on mechanical response. The present study aims to develop a machine learning-based approach to investigate the link between morphology of the human calvarium and its mechanical response under quasi-static uniaxial compression. Micro-computed tomography is used to capture the microstructure at a resolution of <span><math><mrow><mn>18</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span> of male (n=5) and female (n=5) formalin-fixed calvarium specimens of the frontal and parietal regions. Image processing-based machine learning methods using convolutional neural networks are developed to isolate and calculate specific morphometric properties, such as porosity, trabecular thickness and trabecular spacing. Then, an ensemble method using a gradient boosted decision tree (XGBoost) is used to predict the mechanical strength based on the morphological results, and found that mean and minimum porosity at <span><math><mrow><mi>d</mi><mi>i</mi><mi>p</mi><mi>l</mi><mi>o</mi><mi>ë</mi></mrow></math></span> are the most relevant factors for the mechanical strength of cranial bones under the studied conditions. Overall, this study provides new tools that can predict the mechanical response of human calvarium a priori. Besides, the quantitative morphology of the human calvarium can be used as input data in finite element models, as well as contributing to efforts in the development of cranial simulant materials.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"172 ","pages":"Article 107165"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616125002814","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
With the development of increasingly detailed imaging techniques, there is a need to update the methodology and evaluation criteria for bone analysis to understand the influence of bone microarchitecture on mechanical response. The present study aims to develop a machine learning-based approach to investigate the link between morphology of the human calvarium and its mechanical response under quasi-static uniaxial compression. Micro-computed tomography is used to capture the microstructure at a resolution of of male (n=5) and female (n=5) formalin-fixed calvarium specimens of the frontal and parietal regions. Image processing-based machine learning methods using convolutional neural networks are developed to isolate and calculate specific morphometric properties, such as porosity, trabecular thickness and trabecular spacing. Then, an ensemble method using a gradient boosted decision tree (XGBoost) is used to predict the mechanical strength based on the morphological results, and found that mean and minimum porosity at are the most relevant factors for the mechanical strength of cranial bones under the studied conditions. Overall, this study provides new tools that can predict the mechanical response of human calvarium a priori. Besides, the quantitative morphology of the human calvarium can be used as input data in finite element models, as well as contributing to efforts in the development of cranial simulant materials.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.