{"title":"Recent Advances in Atomic Force Microscopy-Based Local Anodic Oxidation Nanolithography of 2D Materials (Adv. Mater. Interfaces 16/2025)","authors":"Jing Yu, Abdulsalam Aji Suleiman, Jing-Wen Shi, Ruey Jinq Ong, Francis Chi-Chung Ling, Weiwen Zhang","doi":"10.1002/admi.70077","DOIUrl":null,"url":null,"abstract":"<p><b>Atomic Force Microscopy-Based Local Anodic Oxidation</b></p><p>Atomic force microscopy (AFM)-based local anodic oxidation (LAO) is a low-cost method that avoids photoresist residues and can etch, oxidize, or alter material properties. This review summarizes the development of AFM LAO technology for 2D materials, discussing its reaction mechanisms, applications, and influencing factors. It covers the use of AFM LAO for nanolithography, oxidation, reduction, and device applications in materials like graphene, h-BN, TMDs, BP, and oxides. The review also examines the challenges and research gaps that remain, including technical obstacles and areas requiring further exploration. Finally, it offers insights into the future prospects of AFM LAO in 2D material-based nano-designs and devices, highlighting both its potential advantages and limitations. More details can be found in article 2500137 by Francis Chi-Chung Ling, Weiwen Zhang, and co-workers.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 16","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/admi.70077","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/admi.70077","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Atomic Force Microscopy-Based Local Anodic Oxidation
Atomic force microscopy (AFM)-based local anodic oxidation (LAO) is a low-cost method that avoids photoresist residues and can etch, oxidize, or alter material properties. This review summarizes the development of AFM LAO technology for 2D materials, discussing its reaction mechanisms, applications, and influencing factors. It covers the use of AFM LAO for nanolithography, oxidation, reduction, and device applications in materials like graphene, h-BN, TMDs, BP, and oxides. The review also examines the challenges and research gaps that remain, including technical obstacles and areas requiring further exploration. Finally, it offers insights into the future prospects of AFM LAO in 2D material-based nano-designs and devices, highlighting both its potential advantages and limitations. More details can be found in article 2500137 by Francis Chi-Chung Ling, Weiwen Zhang, and co-workers.
期刊介绍:
Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018.
The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface.
Advanced Materials Interfaces covers all topics in interface-related research:
Oil / water separation,
Applications of nanostructured materials,
2D materials and heterostructures,
Surfaces and interfaces in organic electronic devices,
Catalysis and membranes,
Self-assembly and nanopatterned surfaces,
Composite and coating materials,
Biointerfaces for technical and medical applications.
Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.