Zhengguo Cai, Hongli Ma, Fengcan Ye, Dingwei Lei, Zhenfeng Deng, Yongge Li, Ruichu Gu, Han Wen
{"title":"Discovery of RNA-Targeting Small Molecules: Challenges and Future Directions","authors":"Zhengguo Cai, Hongli Ma, Fengcan Ye, Dingwei Lei, Zhenfeng Deng, Yongge Li, Ruichu Gu, Han Wen","doi":"10.1002/mco2.70342","DOIUrl":null,"url":null,"abstract":"<p>RNA-targeting small molecules represent a transformative frontier in drug discovery, offering novel therapeutic avenues for diseases traditionally deemed undruggable. This review explores the latest advancements in the development of RNA-binding small molecules, focusing on the current obstacles and promising avenues for future research. We highlight innovations in RNA structure determination, including X-ray crystallography, nuclear magnetic resonance spectroscopy, and cryo-electron microscopy, which provide the foundation for rational drug design. The role of computational approaches, such as deep learning and molecular docking, is emphasized for enhancing RNA structure prediction and ligand screening efficiency. Additionally, we discuss the utility of focused libraries, DNA-encoded libraries, and small-molecule microarrays in identifying bioactive ligands, alongside the potential of fragment-based drug discovery for exploring chemical space. Emerging strategies, such as RNA degraders and modulators of RNA–protein interactions, are reviewed for their therapeutic promise. Specifically, we underscore the pivotal role of artificial intelligence and machine learning in accelerating discovery and optimizing RNA-targeted therapeutics. By synthesizing these advancements, this review aims to inspire further research and collaboration, unlocking the full potential of RNA-targeting small molecules to revolutionize treatment paradigms for a wide range of diseases.</p>","PeriodicalId":94133,"journal":{"name":"MedComm","volume":"6 9","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mco2.70342","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedComm","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mco2.70342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
RNA-targeting small molecules represent a transformative frontier in drug discovery, offering novel therapeutic avenues for diseases traditionally deemed undruggable. This review explores the latest advancements in the development of RNA-binding small molecules, focusing on the current obstacles and promising avenues for future research. We highlight innovations in RNA structure determination, including X-ray crystallography, nuclear magnetic resonance spectroscopy, and cryo-electron microscopy, which provide the foundation for rational drug design. The role of computational approaches, such as deep learning and molecular docking, is emphasized for enhancing RNA structure prediction and ligand screening efficiency. Additionally, we discuss the utility of focused libraries, DNA-encoded libraries, and small-molecule microarrays in identifying bioactive ligands, alongside the potential of fragment-based drug discovery for exploring chemical space. Emerging strategies, such as RNA degraders and modulators of RNA–protein interactions, are reviewed for their therapeutic promise. Specifically, we underscore the pivotal role of artificial intelligence and machine learning in accelerating discovery and optimizing RNA-targeted therapeutics. By synthesizing these advancements, this review aims to inspire further research and collaboration, unlocking the full potential of RNA-targeting small molecules to revolutionize treatment paradigms for a wide range of diseases.