A Deep Learning Earth System Model for Efficient Simulation of the Observed Climate

IF 8.3 Q1 GEOSCIENCES, MULTIDISCIPLINARY
AGU Advances Pub Date : 2025-08-25 DOI:10.1029/2025AV001706
Nathaniel Cresswell-Clay, Bowen Liu, Dale R. Durran, Zihui Liu, Zachary I. Espinosa, Raul A. Moreno, Matthias Karlbauer
{"title":"A Deep Learning Earth System Model for Efficient Simulation of the Observed Climate","authors":"Nathaniel Cresswell-Clay,&nbsp;Bowen Liu,&nbsp;Dale R. Durran,&nbsp;Zihui Liu,&nbsp;Zachary I. Espinosa,&nbsp;Raul A. Moreno,&nbsp;Matthias Karlbauer","doi":"10.1029/2025AV001706","DOIUrl":null,"url":null,"abstract":"<p>A key challenge for computationally intensive state-of-the-art Earth System models is to distinguish global warming signals from interannual variability. Here we introduce Deep Learning Earth System Model (DL<i>ESy</i>M), a parsimonious deep learning model that accurately simulates the Earth's current climate over 1000-year periods with minimal smoothing and no drift. DL<i>ESy</i>M simulations equal or exceed key metrics of seasonal and interannual variability—such as tropical cyclogenesis over the range of observed intensities, the cycle of the Indian Summer monsoon, and the climatology of mid-latitude blocking events—when compared to historical simulations from four leading models from the sixth Climate Model Intercomparison Project. DL<i>ESy</i>M, trained on both historical reanalysis data and satellite observations, is an accurate, highly efficient model of the coupled Earth system, empowering long-range sub-seasonal and seasonal forecasts while using a fraction of the energy and computational time required by traditional models.</p>","PeriodicalId":100067,"journal":{"name":"AGU Advances","volume":"6 4","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025AV001706","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGU Advances","FirstCategoryId":"1085","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025AV001706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A key challenge for computationally intensive state-of-the-art Earth System models is to distinguish global warming signals from interannual variability. Here we introduce Deep Learning Earth System Model (DLESyM), a parsimonious deep learning model that accurately simulates the Earth's current climate over 1000-year periods with minimal smoothing and no drift. DLESyM simulations equal or exceed key metrics of seasonal and interannual variability—such as tropical cyclogenesis over the range of observed intensities, the cycle of the Indian Summer monsoon, and the climatology of mid-latitude blocking events—when compared to historical simulations from four leading models from the sixth Climate Model Intercomparison Project. DLESyM, trained on both historical reanalysis data and satellite observations, is an accurate, highly efficient model of the coupled Earth system, empowering long-range sub-seasonal and seasonal forecasts while using a fraction of the energy and computational time required by traditional models.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

有效模拟观测气候的深度学习地球系统模型
计算密集的最先进的地球系统模型面临的一个关键挑战是区分全球变暖信号和年际变率。在这里,我们介绍了深度学习地球系统模型(DLESyM),这是一个简约的深度学习模型,可以精确地模拟地球当前1000年期间的气候,具有最小的平滑和无漂移。与第六个气候模式比较项目的四个主要模式的历史模拟结果相比,DLESyM模拟结果等于或超过了季节和年际变化的关键指标,如观测强度范围内的热带气旋形成、印度夏季风的周期和中纬度阻塞事件的气候学。DLESyM经过历史再分析数据和卫星观测的训练,是一种精确、高效的耦合地球系统模型,在使用传统模型所需的一小部分能量和计算时间的同时,实现了长期分季节和季节预报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信