Application of Fenton and UV–Fenton Reaction for Resin Wastewater Treatment Detection of Residual H2O2

IF 1.4 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Zeynep Özcan, Gamze Sönmez, Mustafa Işık
{"title":"Application of Fenton and UV–Fenton Reaction for Resin Wastewater Treatment Detection of Residual H2O2","authors":"Zeynep Özcan,&nbsp;Gamze Sönmez,&nbsp;Mustafa Işık","doi":"10.1002/clen.70035","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The Fenton and UV–Fenton procedures were utilized in this study to eliminate total organic carbon (TOC) from wastewater generated during actual resin manufacturing. Optimal operating parameter values influencing removal efficiency were identified, including initial H<sub>2</sub>O<sub>2</sub> and Fe<sup>2+</sup> concentrations and total reaction time (<i>t</i>). The residual H<sub>2</sub>O<sub>2</sub> concentration was measured using the metavanadate method in all processes. The results indicated that the Fenton process achieved a TOC removal rate of 32.0% at concentrations of 500 mg L<sup>−1</sup> for H<sub>2</sub>O<sub>2</sub> and 100 mg L<sup>−1</sup> for Fe<sup>2+</sup>, with a constant pH of 3.78 and a reaction time of 6 h. In the UV–Fenton process, H<sub>2</sub>O<sub>2</sub> concentrations of 500 and 1000 mg L<sup>−1</sup> were examined, resulting in 14% and 15% TOC removal efficiencies, respectively. The effect of gradually adding H<sub>2</sub>O<sub>2</sub> on the removal efficiency was also investigated in this study. To do this, the Fenton process started with an initial H<sub>2</sub>O<sub>2</sub> concentration of 250 mg L<sup>−1</sup>. Once approximately 80% of this amount was consumed, 250 mg L<sup>−1</sup> H<sub>2</sub>O<sub>2</sub> was added, and the process continued. A maximum TOC removal of about 71% was achieved by gradually adding H<sub>2</sub>O<sub>2</sub> at a 4000 mg L<sup>−1</sup> concentration. On the basis of these findings, the gradual addition of H<sub>2</sub>O<sub>2</sub>, as opposed to an initial dose, proved to be a significant and practical method for removing organic matter from wastewater in the Fenton process.</p>\n </div>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"53 8","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clean-soil Air Water","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/clen.70035","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The Fenton and UV–Fenton procedures were utilized in this study to eliminate total organic carbon (TOC) from wastewater generated during actual resin manufacturing. Optimal operating parameter values influencing removal efficiency were identified, including initial H2O2 and Fe2+ concentrations and total reaction time (t). The residual H2O2 concentration was measured using the metavanadate method in all processes. The results indicated that the Fenton process achieved a TOC removal rate of 32.0% at concentrations of 500 mg L−1 for H2O2 and 100 mg L−1 for Fe2+, with a constant pH of 3.78 and a reaction time of 6 h. In the UV–Fenton process, H2O2 concentrations of 500 and 1000 mg L−1 were examined, resulting in 14% and 15% TOC removal efficiencies, respectively. The effect of gradually adding H2O2 on the removal efficiency was also investigated in this study. To do this, the Fenton process started with an initial H2O2 concentration of 250 mg L−1. Once approximately 80% of this amount was consumed, 250 mg L−1 H2O2 was added, and the process continued. A maximum TOC removal of about 71% was achieved by gradually adding H2O2 at a 4000 mg L−1 concentration. On the basis of these findings, the gradual addition of H2O2, as opposed to an initial dose, proved to be a significant and practical method for removing organic matter from wastewater in the Fenton process.

Abstract Image

Fenton和UV-Fenton反应在树脂废水处理中残留H2O2检测中的应用
本研究利用Fenton和UV-Fenton工艺去除树脂生产过程中产生的废水中的总有机碳(TOC)。确定了影响去除率的最佳操作参数值,包括初始H2O2和Fe2+浓度以及总反应时间(t)。各工序残余H2O2浓度采用偏氰酸盐法测定。结果表明,在pH为3.78、反应时间为6 h、H2O2浓度为500 mg L−1和Fe2+浓度为100 mg L−1的条件下,Fenton法TOC去除率为32.0%。在UV-Fenton法中,H2O2浓度为500和1000 mg L−1时,TOC去除率分别为14%和15%。本研究还考察了逐渐加入H2O2对去除率的影响。为此,Fenton工艺以初始H2O2浓度为250 mg L−1开始。当大约80%的量被消耗后,加入250 mg L−1 H2O2,并继续该过程。逐渐加入浓度为4000 mg L−1的H2O2,最大TOC去除率约为71%。在这些发现的基础上,逐步添加H2O2,而不是初始剂量,被证明是去除Fenton工艺废水中有机物的重要而实用的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Clean-soil Air Water
Clean-soil Air Water 环境科学-海洋与淡水生物学
CiteScore
2.80
自引率
5.90%
发文量
88
审稿时长
3.6 months
期刊介绍: CLEAN covers all aspects of Sustainability and Environmental Safety. The journal focuses on organ/human--environment interactions giving interdisciplinary insights on a broad range of topics including air pollution, waste management, the water cycle, and environmental conservation. With a 2019 Journal Impact Factor of 1.603 (Journal Citation Reports (Clarivate Analytics, 2020), the journal publishes an attractive mixture of peer-reviewed scientific reviews, research papers, and short communications. Papers dealing with environmental sustainability issues from such fields as agriculture, biological sciences, energy, food sciences, geography, geology, meteorology, nutrition, soil and water sciences, etc., are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信