Peng Zhang, Qiuyan Shen, Yongxing Ba, Qiang Liu, Liangyin Wu, Jiangfeng Song, Bin Jiang, Fusheng Pan
{"title":"Influence of Temperature Distribution on the Microstructure and Edge-Cracking Behavior of AZ31 Sheets During Online Heating Rolling","authors":"Peng Zhang, Qiuyan Shen, Yongxing Ba, Qiang Liu, Liangyin Wu, Jiangfeng Song, Bin Jiang, Fusheng Pan","doi":"10.1002/adem.202500457","DOIUrl":null,"url":null,"abstract":"<p>The occurrence of edge cracks in magnesium alloy rolled sheets is closely related to the temperature distribution during rolling. However, the detailed temperature evolution of the sheet and its effects on edge cracking remain unclear. Herein, an online heating rolling (O-LHR) temperature acquisition system is developed using embedded thermocouples. The temperature distribution of AZ31 alloy sheet at different rolling temperatures (180, 220, 260, and 300 °C) is quantified through mathematical expression and experimental validation, and its effects on the microstructure and edge-cracking behavior are studied. The modified mathematical expression <span></span><math>\n <semantics>\n <mrow>\n <mo>Δ</mo>\n <msub>\n <mi>T</mi>\n <mrow>\n <mi>t</mi>\n <mi>o</mi>\n <mi>t</mi>\n <mi>a</mi>\n <mi>l</mi>\n </mrow>\n </msub>\n <mo>=</mo>\n <mi>k</mi>\n <mrow>\n <mo>{</mo> \n <mrow>\n <mfrac>\n <mrow>\n <mn>2</mn>\n <msub>\n <mi>h</mi>\n <mi>r</mi>\n </msub>\n <mo>Δ</mo>\n <msub>\n <mi>T</mi>\n <mi>a</mi>\n </msub>\n <mo>Δ</mo>\n <msub>\n <mi>t</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <mrow>\n <mi>C</mi>\n <mi>ρ</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>H</mi>\n <mo>+</mo>\n <mi>h</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n </mfrac>\n <mo>+</mo>\n <mfrac>\n <mrow>\n <mn>4</mn>\n <msub>\n <mi>h</mi>\n <mn>1</mn>\n </msub>\n <mo>Δ</mo>\n <msub>\n <mi>T</mi>\n <mn>1</mn>\n </msub>\n <msqrt>\n <mrow>\n <mi>R</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>H</mi>\n <mo>−</mo>\n <mi>h</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n </msqrt>\n </mrow>\n <mrow>\n <mi>C</mi>\n <mi>ρ</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>H</mi>\n <mo>+</mo>\n <mi>h</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mi>v</mi>\n </mrow>\n </mfrac>\n <mo>+</mo>\n <mfrac>\n <mrow>\n <mi>η</mi>\n <mi>σ</mi>\n <mi>ln</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mfrac>\n <mi>H</mi>\n <mi>h</mi>\n </mfrac>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <mrow>\n <mi>C</mi>\n <mi>ρ</mi>\n </mrow>\n </mfrac>\n <mo>+</mo>\n <mfrac>\n <mrow>\n <mn>2</mn>\n <mi>μ</mi>\n <msub>\n <mi>m</mi>\n <mn>1</mn>\n </msub>\n <mi>g</mi>\n </mrow>\n <mrow>\n <mi>C</mi>\n <mi>ρ</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>H</mi>\n <mo>+</mo>\n <mi>h</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mi>w</mi>\n </mrow>\n </mfrac>\n </mrow> \n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation>$\\Delta T_{t o t a l} = \\text{k} \\left{\\right. \\frac{2 h_{r} \\Delta T_{a} \\Delta t_{1}}{C \\rho \\left(\\right. H + h \\left.\\right)} + \\frac{4 h_{1} \\Delta T_{1} \\sqrt{R \\left(\\right. H - h \\left.\\right)}}{C \\rho \\left(\\right. H + h \\left.\\right) v} + \\frac{\\eta \\sigma ln \\left(\\right. \\frac{H}{h} \\left.\\right)}{C \\rho} + \\frac{2 \\mu m_{1} g}{C \\rho \\left(\\right. H + h \\left.\\right) w} \\left.\\right}$</annotation>\n </semantics></math> demonstrates good agreement with the experimental results in predicting the temperature evolution at the sheet's middle. Furthermore, increasing the rolling temperature reduces the temperature difference between the middle and the edge from 52.7–21.2 °C, correspondingly decreasing both the number and depth of the edge cracks. Specifically, the number of observed cracks decreases from 16 to 7, while the average crack depth is reduced from 0.9 to 0.2 mm. The O-LHR improves the edge crack resistance of AZ31 sheets by reducing the temperature difference in the middle and the edge of the sheets.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"27 16","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adem.202500457","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The occurrence of edge cracks in magnesium alloy rolled sheets is closely related to the temperature distribution during rolling. However, the detailed temperature evolution of the sheet and its effects on edge cracking remain unclear. Herein, an online heating rolling (O-LHR) temperature acquisition system is developed using embedded thermocouples. The temperature distribution of AZ31 alloy sheet at different rolling temperatures (180, 220, 260, and 300 °C) is quantified through mathematical expression and experimental validation, and its effects on the microstructure and edge-cracking behavior are studied. The modified mathematical expression demonstrates good agreement with the experimental results in predicting the temperature evolution at the sheet's middle. Furthermore, increasing the rolling temperature reduces the temperature difference between the middle and the edge from 52.7–21.2 °C, correspondingly decreasing both the number and depth of the edge cracks. Specifically, the number of observed cracks decreases from 16 to 7, while the average crack depth is reduced from 0.9 to 0.2 mm. The O-LHR improves the edge crack resistance of AZ31 sheets by reducing the temperature difference in the middle and the edge of the sheets.
镁合金轧制薄板边缘裂纹的产生与轧制过程中的温度分布密切相关。然而,板材的详细温度演变及其对边缘开裂的影响尚不清楚。本文采用嵌入式热电偶技术,开发了一种在线加热轧制(O-LHR)温度采集系统。通过数学表达式和实验验证,量化了AZ31合金板材在不同轧制温度(180、220、260和300℃)下的温度分布,并研究了温度分布对AZ31合金组织和边缘开裂行为的影响。 修正后的数学表达式Δ T T o T al = k {2h r Δ T a Δ T 1C ρ (H + H) +4 h 1 Δ T 1 R (H−H) C ρ(H + H) v + η σ ln(H H) C ρ+ 2 μ m 1 g C ρ (}H + H) w $\Delta T_{t o t a l} = \text{k} \left{\right. \frac{2 h_{r} \Delta T_{a} \Delta t_{1}}{C \rho \left(\right. H + h \left.\right)} + \frac{4 h_{1} \Delta T_{1} \sqrt{R \left(\right. H - h \left.\right)}}{C \rho \left(\right. H + h \left.\right) v} + \frac{\eta \sigma ln \left(\right. \frac{H}{h} \left.\right)}{C \rho} + \frac{2 \mu m_{1} g}{C \rho \left(\right. H + h \left.\right) w} \left.\right}$与实验结果吻合较好薄片中间的温度变化。 此外,提高轧制温度可使中间与边缘的温差从52.7℃减小到21.2℃,从而减少边缘裂纹的数量和深度。其中,裂纹数量从16个减少到7个,平均裂纹深度从0.9 mm减少到0.2 mm。O-LHR通过减小AZ31薄板中间和边缘的温差,提高了AZ31薄板的抗边裂性。
期刊介绍:
Advanced Engineering Materials is the membership journal of three leading European Materials Societies
- German Materials Society/DGM,
- French Materials Society/SF2M,
- Swiss Materials Federation/SVMT.