Higher-Order Fermi–Walker Transport Dynamics and the Induced Geometric Phase

IF 1.7 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Rıdvan Cem Demirkol
{"title":"Higher-Order Fermi–Walker Transport Dynamics and the Induced Geometric Phase","authors":"Rıdvan Cem Demirkol","doi":"10.1007/s10773-025-06099-y","DOIUrl":null,"url":null,"abstract":"<div><p>We define higher-order Fermi–Walker derivatives of vector fields along curves in Euclidean 3-space using the Frenet–Serret frame. From the incompatibility of successive Fermi–Walker transports, we derive a geometric phase—termed the Fermi–Walker flow transport phase—which depends on the intrinsic geometry of the curve. We then examine this phase for various curve evolutions, including binormal, complex modified Korteweg–de Vries, and other integrable motions. Our formulation provides an explicit and unified method for computing the induced geometric phases in these settings.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"64 9","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-025-06099-y","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We define higher-order Fermi–Walker derivatives of vector fields along curves in Euclidean 3-space using the Frenet–Serret frame. From the incompatibility of successive Fermi–Walker transports, we derive a geometric phase—termed the Fermi–Walker flow transport phase—which depends on the intrinsic geometry of the curve. We then examine this phase for various curve evolutions, including binormal, complex modified Korteweg–de Vries, and other integrable motions. Our formulation provides an explicit and unified method for computing the induced geometric phases in these settings.

高阶费米-沃克输运动力学和诱导几何相位
我们用Frenet-Serret坐标系定义了欧几里得三维空间中沿曲线的向量场的高阶费米-沃克导数。从连续的费米-沃克输运的不相容中,我们导出了一个几何相,称为费米-沃克流输运相,它取决于曲线的固有几何形状。然后,我们检查这一阶段的各种曲线演变,包括二正态,复杂的修正Korteweg-de Vries,和其他可积运动。我们的公式提供了一种明确和统一的方法来计算这些设置中的诱导几何相位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信