Estimation of lower limb rehabilitation exoskeleton torque by combining dual-joint parameter identification and neural network

IF 5.2 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Yumeng Zhang, Chen Lv, Yaning Li, Longhan Xie
{"title":"Estimation of lower limb rehabilitation exoskeleton torque by combining dual-joint parameter identification and neural network","authors":"Yumeng Zhang,&nbsp;Chen Lv,&nbsp;Yaning Li,&nbsp;Longhan Xie","doi":"10.1016/j.robot.2025.105178","DOIUrl":null,"url":null,"abstract":"<div><div>Lower limb rehabilitation exoskeleton is widely used for rehabilitative training. Estimating the torque of the lower limb exoskeleton can help identify the patient's intent, thereby enhancing engagement in rehabilitative training. Parameter identification (PI) is used to estimate torque. However, the presence of unmodeled dynamics and external disturbances poses challenges for achieving reliable torque estimation. Consequently, achieving accurate torque estimation is a primary research focus in this field. This study combines dual-joint parameter identification and neural network, for estimating joint torque in lower limb rehabilitation exoskeletons. This method enhances the performance of parameter identification optimization algorithms by employing Markov-based Particle Swarm Optimization and Gradient Descent Algorithm (MPG). Additionally, it independently identifies the parameters of the hip and knee joints, thereby enhancing the accuracy of torque estimation for each joint. The estimated physical parameters of the model and joint state variables are then utilized as inputs to the neural network for estimating the torques during the lower limb exoskeleton training process. MATLAB simulation demonstrates that employing MPG for parameter identification enhances fitness by 37.59 % and 15.24 % when compared to Particle Swarm Optimization(PSO) and Gradient descent (GD), respectively. Through experimental verification conducted under controlled disturbances, method for combining dual-joint parameter identification and neural networks (DPI-BP) demonstrates its effectiveness in accurately estimating torque in lower limb rehabilitation exoskeletons. Angle, velocity, acceleration, inertia matrix, Coriolis matrix, gravity matrix and friction matrix of hip and knee joints are taken as inputs for DPI-BP. The application of DPI-BP results in a reduction of torque estimation errors, specifically by 0.12 Nm and 1.40 Nm(P&lt;0.001), corresponding to a decrease of 66.57 % and 14.35 % when compared to the PI and Backpropagation (BP) methods, respectively. The torque estimation error of hip and knee joints are 0.86 Nm and 0.54 Nm.</div></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"194 ","pages":"Article 105178"},"PeriodicalIF":5.2000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921889025002751","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Lower limb rehabilitation exoskeleton is widely used for rehabilitative training. Estimating the torque of the lower limb exoskeleton can help identify the patient's intent, thereby enhancing engagement in rehabilitative training. Parameter identification (PI) is used to estimate torque. However, the presence of unmodeled dynamics and external disturbances poses challenges for achieving reliable torque estimation. Consequently, achieving accurate torque estimation is a primary research focus in this field. This study combines dual-joint parameter identification and neural network, for estimating joint torque in lower limb rehabilitation exoskeletons. This method enhances the performance of parameter identification optimization algorithms by employing Markov-based Particle Swarm Optimization and Gradient Descent Algorithm (MPG). Additionally, it independently identifies the parameters of the hip and knee joints, thereby enhancing the accuracy of torque estimation for each joint. The estimated physical parameters of the model and joint state variables are then utilized as inputs to the neural network for estimating the torques during the lower limb exoskeleton training process. MATLAB simulation demonstrates that employing MPG for parameter identification enhances fitness by 37.59 % and 15.24 % when compared to Particle Swarm Optimization(PSO) and Gradient descent (GD), respectively. Through experimental verification conducted under controlled disturbances, method for combining dual-joint parameter identification and neural networks (DPI-BP) demonstrates its effectiveness in accurately estimating torque in lower limb rehabilitation exoskeletons. Angle, velocity, acceleration, inertia matrix, Coriolis matrix, gravity matrix and friction matrix of hip and knee joints are taken as inputs for DPI-BP. The application of DPI-BP results in a reduction of torque estimation errors, specifically by 0.12 Nm and 1.40 Nm(P<0.001), corresponding to a decrease of 66.57 % and 14.35 % when compared to the PI and Backpropagation (BP) methods, respectively. The torque estimation error of hip and knee joints are 0.86 Nm and 0.54 Nm.
双关节参数识别与神经网络相结合的下肢康复外骨骼扭矩估计
下肢康复外骨骼广泛应用于康复训练。估计下肢外骨骼的扭矩可以帮助识别患者的意图,从而提高康复训练的参与度。采用参数辨识(PI)来估计扭矩。然而,未建模的动力学和外部干扰的存在对实现可靠的转矩估计提出了挑战。因此,实现准确的转矩估计是该领域的主要研究重点。本研究将双关节参数辨识与神经网络相结合,用于下肢康复外骨骼关节扭矩估计。该方法采用基于马尔可夫的粒子群算法和梯度下降算法(MPG),提高了参数识别优化算法的性能。此外,它还能独立识别髋关节和膝关节的参数,从而提高了每个关节的扭矩估计的准确性。然后将模型估计的物理参数和关节状态变量作为神经网络的输入,用于估计下肢外骨骼训练过程中的扭矩。MATLAB仿真表明,与粒子群算法(PSO)和梯度下降算法(GD)相比,MPG算法的适应度分别提高了37.59%和15.24%。通过可控干扰下的实验验证,双关节参数识别与神经网络(DPI-BP)相结合的方法能够准确估计下肢康复外骨骼的扭矩。以髋关节和膝关节的角度、速度、加速度、惯性矩阵、科里奥利矩阵、重力矩阵和摩擦矩阵作为DPI-BP的输入。DPI-BP的应用使扭矩估计误差降低了0.12 Nm和1.40 Nm(P<0.001),与PI和反向传播(BP)方法相比,分别降低了66.57%和14.35%。髋关节和膝关节的扭矩估计误差分别为0.86 Nm和0.54 Nm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Robotics and Autonomous Systems
Robotics and Autonomous Systems 工程技术-机器人学
CiteScore
9.00
自引率
7.00%
发文量
164
审稿时长
4.5 months
期刊介绍: Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems. Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信