Engineering bipedal Janus nanocarriers: Dual-targeting and pH/microwave-responsive drug delivery system for cancer therapy

IF 4.7 3区 材料科学 Q1 CHEMISTRY, APPLIED
Rong Wang , Xiaodan Kong
{"title":"Engineering bipedal Janus nanocarriers: Dual-targeting and pH/microwave-responsive drug delivery system for cancer therapy","authors":"Rong Wang ,&nbsp;Xiaodan Kong","doi":"10.1016/j.micromeso.2025.113820","DOIUrl":null,"url":null,"abstract":"<div><div>The development of intelligent platforms capable of precisely targeting cancer cells while minimizing toxic side effects on normal tissues remains a significant challenge in medical applications. This study proposes a structurally innovative bipedal Janus nanocarrier (Fe<sub>3</sub>O<sub>4</sub>@TiO<sub>2</sub>&amp;dmSiO<sub>2</sub>/FA) for intelligent drug delivery. The architecture integrates magnetic-responsive and microwave (MW)-responsive Fe<sub>3</sub>O<sub>4</sub>@TiO<sub>2</sub> (core@shell) components with anisotropicly grown bipedal mesoporous silica (dmSiO<sub>2</sub>), the latter being modified with folic acid (FA) targeting ligands. This design achieves dual-mode tumor targeting by concurrently enabling FA-mediated active recognition and magnetic field-guided navigation. The system demonstrates drug release behavior orchestrated through the synergistic interplay between endogenous tumor microenvironmental stimuli (pH 5.3) and exogenous MW irradiation. MTT assays revealed that doxorubicin-loaded nanocarriers exhibit significant cytotoxicity under MW exposure, achieving over 80 % proliferation inhibition in multiple cancer cell lines. These results position this nanocarrier as a promising candidate for effective cancer therapy.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"398 ","pages":"Article 113820"},"PeriodicalIF":4.7000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138718112500335X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The development of intelligent platforms capable of precisely targeting cancer cells while minimizing toxic side effects on normal tissues remains a significant challenge in medical applications. This study proposes a structurally innovative bipedal Janus nanocarrier (Fe3O4@TiO2&dmSiO2/FA) for intelligent drug delivery. The architecture integrates magnetic-responsive and microwave (MW)-responsive Fe3O4@TiO2 (core@shell) components with anisotropicly grown bipedal mesoporous silica (dmSiO2), the latter being modified with folic acid (FA) targeting ligands. This design achieves dual-mode tumor targeting by concurrently enabling FA-mediated active recognition and magnetic field-guided navigation. The system demonstrates drug release behavior orchestrated through the synergistic interplay between endogenous tumor microenvironmental stimuli (pH 5.3) and exogenous MW irradiation. MTT assays revealed that doxorubicin-loaded nanocarriers exhibit significant cytotoxicity under MW exposure, achieving over 80 % proliferation inhibition in multiple cancer cell lines. These results position this nanocarrier as a promising candidate for effective cancer therapy.

Abstract Image

工程双足Janus纳米载体:用于癌症治疗的双靶向和pH/微波响应药物递送系统
开发能够精确靶向癌细胞的智能平台,同时最大限度地减少对正常组织的毒副作用,仍然是医疗应用中的一个重大挑战。本研究提出了一种结构新颖的双足Janus纳米载体(Fe3O4@TiO2&dmSiO2/FA),用于智能给药。该结构将磁响应和微波响应(MW) Fe3O4@TiO2 (core@shell)组件与各向异性生长的双足介孔二氧化硅(dmSiO2)集成在一起,后者被叶酸(FA)靶向配体修饰。该设计通过同时启用fa介导的主动识别和磁场引导导航来实现双模式肿瘤靶向。该系统通过内源性肿瘤微环境刺激(pH 5.3)和外源性MW照射之间的协同相互作用,展示了药物释放行为。MTT实验显示,负载阿霉素的纳米载体在毫瓦暴露下表现出显著的细胞毒性,在多种癌细胞系中实现超过80%的增殖抑制。这些结果使这种纳米载体成为有效癌症治疗的有希望的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microporous and Mesoporous Materials
Microporous and Mesoporous Materials 化学-材料科学:综合
CiteScore
10.70
自引率
5.80%
发文量
649
审稿时长
26 days
期刊介绍: Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal. Topics which are particularly of interest include: All aspects of natural microporous and mesoporous solids The synthesis of crystalline or amorphous porous materials The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials Adsorption (and other separation techniques) using microporous or mesoporous adsorbents Catalysis by microporous and mesoporous materials Host/guest interactions Theoretical chemistry and modelling of host/guest interactions All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信