Sabrina Gennis , Matthew D. Biviano , Kristoffer P. Lyngbirk , Hannah R. Thomas , Viktoriya Vasina , Christine Faulkner , Michael Knoblauch , Kaare H. Jensen
{"title":"A multi-physics approach to probing plant responses: From calcium signaling to thigmonastic motion","authors":"Sabrina Gennis , Matthew D. Biviano , Kristoffer P. Lyngbirk , Hannah R. Thomas , Viktoriya Vasina , Christine Faulkner , Michael Knoblauch , Kaare H. Jensen","doi":"10.1016/j.jplph.2025.154570","DOIUrl":null,"url":null,"abstract":"<div><div>Plants respond to biotic and abiotic stresses through complex and dynamic mechanisms that integrate physical, chemical, and biological cues. Here, we present a multi-physics platform designed to systematically investigate these responses across scales. The platform combines a six-axis micromanipulator with interchangeable probes to deliver precise mechanical, electrostatic, optical, and chemical stimuli. Using this system, we explore calcium signaling in <em>Arabidopsis thaliana</em>, thigmonastic motion in <em>Mimosa pudica</em>, and chemical exchange via microinjection in <em>Rosmarinus officinalis L.</em> and <em>Ocimum basilicum</em>. Our findings highlight stimulus-specific and spatially dependent responses: mechanical and electrostatic stimuli elicit distinct calcium signaling patterns, while repeated electrostatic stimulation exhibited evidence of response fatigue. Thigmonastic responses in <em>Mimosa pudica</em> depend on the location of perturbation, highlighting the intricate bi-directional calcium signaling. Microinjection experiments successfully demonstrate targeted chemical perturbations in glandular trichomes, opening avenues for biochemical studies. This open-source platform provides a versatile tool for dissecting plant stress responses, bridging the gap between fundamental research and applied technologies in agriculture and bioengineering. By enabling precise, scalable, and reproducible studies of plant-environment interactions, this work offers new insights into the mechanisms underlying plant resilience and adaptability.</div></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"312 ","pages":"Article 154570"},"PeriodicalIF":4.1000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of plant physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S017616172500152X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Plants respond to biotic and abiotic stresses through complex and dynamic mechanisms that integrate physical, chemical, and biological cues. Here, we present a multi-physics platform designed to systematically investigate these responses across scales. The platform combines a six-axis micromanipulator with interchangeable probes to deliver precise mechanical, electrostatic, optical, and chemical stimuli. Using this system, we explore calcium signaling in Arabidopsis thaliana, thigmonastic motion in Mimosa pudica, and chemical exchange via microinjection in Rosmarinus officinalis L. and Ocimum basilicum. Our findings highlight stimulus-specific and spatially dependent responses: mechanical and electrostatic stimuli elicit distinct calcium signaling patterns, while repeated electrostatic stimulation exhibited evidence of response fatigue. Thigmonastic responses in Mimosa pudica depend on the location of perturbation, highlighting the intricate bi-directional calcium signaling. Microinjection experiments successfully demonstrate targeted chemical perturbations in glandular trichomes, opening avenues for biochemical studies. This open-source platform provides a versatile tool for dissecting plant stress responses, bridging the gap between fundamental research and applied technologies in agriculture and bioengineering. By enabling precise, scalable, and reproducible studies of plant-environment interactions, this work offers new insights into the mechanisms underlying plant resilience and adaptability.
期刊介绍:
The Journal of Plant Physiology is a broad-spectrum journal that welcomes high-quality submissions in all major areas of plant physiology, including plant biochemistry, functional biotechnology, computational and synthetic plant biology, growth and development, photosynthesis and respiration, transport and translocation, plant-microbe interactions, biotic and abiotic stress. Studies are welcome at all levels of integration ranging from molecules and cells to organisms and their environments and are expected to use state-of-the-art methodologies. Pure gene expression studies are not within the focus of our journal. To be considered for publication, papers must significantly contribute to the mechanistic understanding of physiological processes, and not be merely descriptive, or confirmatory of previous results. We encourage the submission of papers that explore the physiology of non-model as well as accepted model species and those that bridge basic and applied research. For instance, studies on agricultural plants that show new physiological mechanisms to improve agricultural efficiency are welcome. Studies performed under uncontrolled situations (e.g. field conditions) not providing mechanistic insight will not be considered for publication.
The Journal of Plant Physiology publishes several types of articles: Original Research Articles, Reviews, Perspectives Articles, and Short Communications. Reviews and Perspectives will be solicited by the Editors; unsolicited reviews are also welcome but only from authors with a strong track record in the field of the review. Original research papers comprise the majority of published contributions.