Polynomial 3D Green coordinates and their derivatives for linear cages

IF 2.8 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Xiongyu Wu, Shibo Liu, Xiao-Ming Fu
{"title":"Polynomial 3D Green coordinates and their derivatives for linear cages","authors":"Xiongyu Wu,&nbsp;Shibo Liu,&nbsp;Xiao-Ming Fu","doi":"10.1016/j.cag.2025.104388","DOIUrl":null,"url":null,"abstract":"<div><div>We derive closed-form expressions for polynomial Green coordinates and their derivatives for 3D linear cages. The keys to our derivation are the integrals of polynomials divided by Euclidean distance over a triangle and their derivatives. We demonstrate the usefulness of our polynomial 3D Green coordinates and derivatives on cage-based and variational shape deformations. In cage-based deformation, the coordinates enable deformation from linear polygons of the input cage to polynomial surfaces of any order, allowing users to perform intuitive deformations with a small number of input parameters. In variational deformation, the coordinates and derivatives form a smooth deformation subspace, allowing for the realization of nonlinear shape optimization.</div></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"132 ","pages":"Article 104388"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849325002298","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

We derive closed-form expressions for polynomial Green coordinates and their derivatives for 3D linear cages. The keys to our derivation are the integrals of polynomials divided by Euclidean distance over a triangle and their derivatives. We demonstrate the usefulness of our polynomial 3D Green coordinates and derivatives on cage-based and variational shape deformations. In cage-based deformation, the coordinates enable deformation from linear polygons of the input cage to polynomial surfaces of any order, allowing users to perform intuitive deformations with a small number of input parameters. In variational deformation, the coordinates and derivatives form a smooth deformation subspace, allowing for the realization of nonlinear shape optimization.

Abstract Image

线性笼的多项式三维格林坐标及其导数
我们导出了三维线性笼的多项式格林坐标及其导数的封闭表达式。我们推导的关键是多项式的积分除以三角形上的欧几里得距离和它们的导数。我们证明了我们的多项式三维绿色坐标和导数对基于笼形和变分形状变形的有用性。在基于笼子的变形中,这些坐标可以使输入笼子的线性多边形变形为任何顺序的多项式曲面,允许用户使用少量的输入参数进行直观的变形。在变分变形中,坐标和导数形成光滑的变形子空间,可以实现非线性形状优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Graphics-Uk
Computers & Graphics-Uk 工程技术-计算机:软件工程
CiteScore
5.30
自引率
12.00%
发文量
173
审稿时长
38 days
期刊介绍: Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on: 1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains. 2. State-of-the-art papers on late-breaking, cutting-edge research on CG. 3. Information on innovative uses of graphics principles and technologies. 4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信