Generating New Coordination Compounds via Multireference Simulations, Genetic Algorithms, and Machine Learning: The Case of Co(II) and Dy(III) Molecular Magnets

IF 8.7 Q1 CHEMISTRY, MULTIDISCIPLINARY
JACS Au Pub Date : 2025-07-29 DOI:10.1021/jacsau.5c00502
Lion Frangoulis, Zahra Khatibi, Lorenzo A. Mariano and Alessandro Lunghi*, 
{"title":"Generating New Coordination Compounds via Multireference Simulations, Genetic Algorithms, and Machine Learning: The Case of Co(II) and Dy(III) Molecular Magnets","authors":"Lion Frangoulis,&nbsp;Zahra Khatibi,&nbsp;Lorenzo A. Mariano and Alessandro Lunghi*,&nbsp;","doi":"10.1021/jacsau.5c00502","DOIUrl":null,"url":null,"abstract":"<p >The design of coordination compounds with target properties often requires years of continuous feedback loop between theory, simulations, and experiments. In the case of magnetic molecules, this conventional strategy has indeed led to the breakthrough of single-molecule magnets with working temperatures above liquid nitrogen’s boiling point, but at significant costs in terms of resources and time. Here, we propose a computational strategy capable of accelerating the discovery of new coordination compounds with the desired electronic and magnetic properties. Our approach is based on a combination of high-throughput multireference ab initio methods, genetic algorithms, and machine learning. While genetic algorithms allow for an intelligent sampling of the vast chemical space available, machine learning reduces the computational cost by prescreening molecular properties in advance of their accurate and automated multireference ab initio characterization. Importantly, the presented framework is able to generate novel organic ligands and explore chemical motifs beyond those available in pre-existing structural databases. We showcase the power of this approach by automatically generating new Co(II) and Dy(III) mononuclear coordination compounds with record magnetic properties in a fraction of the time required by either experiments or brute-force ab initio approaches. In the case of Dy compounds, simulations uncover new nontrivial chemical strategies toward pentagonal bipyramidal complexes with record-breaking values of magnetic anisotropy.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 8","pages":"3808–3821"},"PeriodicalIF":8.7000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/jacsau.5c00502","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.5c00502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The design of coordination compounds with target properties often requires years of continuous feedback loop between theory, simulations, and experiments. In the case of magnetic molecules, this conventional strategy has indeed led to the breakthrough of single-molecule magnets with working temperatures above liquid nitrogen’s boiling point, but at significant costs in terms of resources and time. Here, we propose a computational strategy capable of accelerating the discovery of new coordination compounds with the desired electronic and magnetic properties. Our approach is based on a combination of high-throughput multireference ab initio methods, genetic algorithms, and machine learning. While genetic algorithms allow for an intelligent sampling of the vast chemical space available, machine learning reduces the computational cost by prescreening molecular properties in advance of their accurate and automated multireference ab initio characterization. Importantly, the presented framework is able to generate novel organic ligands and explore chemical motifs beyond those available in pre-existing structural databases. We showcase the power of this approach by automatically generating new Co(II) and Dy(III) mononuclear coordination compounds with record magnetic properties in a fraction of the time required by either experiments or brute-force ab initio approaches. In the case of Dy compounds, simulations uncover new nontrivial chemical strategies toward pentagonal bipyramidal complexes with record-breaking values of magnetic anisotropy.

通过多参考模拟、遗传算法和机器学习生成新的配位化合物:Co(II)和Dy(III)分子磁体的案例
具有目标特性的配位化合物的设计通常需要在理论、模拟和实验之间进行数年的连续反馈循环。就磁性分子而言,这一传统策略确实导致了工作温度高于液氮沸点的单分子磁体的突破,但在资源和时间方面成本高昂。在这里,我们提出了一种能够加速发现具有所需电子和磁性质的新配位化合物的计算策略。我们的方法是基于高通量多参考从头算方法、遗传算法和机器学习的结合。虽然遗传算法允许对大量可用的化学空间进行智能采样,但机器学习通过在精确和自动化的多参考从头开始表征之前预先筛选分子特性来降低计算成本。重要的是,所提出的框架能够产生新的有机配体,并探索现有结构数据库中可用的化学基序。我们通过自动生成新的Co(II)和Dy(III)单核配位化合物来展示这种方法的强大功能,这些化合物具有创纪录的磁性,只需实验或从头算蛮力方法所需的一小部分时间。在Dy化合物的情况下,模拟揭示了具有破纪录的磁各向异性值的五边形双锥配合物的新的非平凡化学策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信