{"title":"Efficient 3D Biomedical Image Segmentation by Parallelly Multiscale Transformer–CNN Aggregation Network","authors":"Wei Liu, Yuxiao He, Tiantian Man*, Fulin Zhu, Qiaoliang Chen, Yaqi Huang, Xuyu Feng, Bin Li, Ying Wan, Jian He* and Shengyuan Deng*, ","doi":"10.1021/cbmi.4c00102","DOIUrl":null,"url":null,"abstract":"<p >Accurate and automated segmentation of 3D biomedical images is a sophisticated imperative in clinical diagnosis, imaging-guided surgery, and prognosis judgment. Although the burgeoning of deep learning technologies has fostered smart segmentators, the successive and simultaneous garnering global and local features still remains challenging, which is essential for an exact and efficient imageological assay. To this end, a segmentation solution dubbed the mixed parallel shunted transformer (MPSTrans) is developed here, highlighting 3D-MPST blocks in a U-form framework. It enabled not only comprehensive characteristic capture and multiscale slice synchronization but also deep supervision in the decoder to facilitate the fetching of hierarchical representations. Performing on an unpublished colon cancer data set, this model achieved an impressive increase in dice similarity coefficient (DSC) and a 1.718 mm decease in Hausdorff distance at 95% (HD95), alongside a substantial shrink of computational load of 56.7% in giga floating-point operations per second (GFLOPs). Meanwhile, MPSTrans outperforms other mainstream methods (Swin UNETR, UNETR, nnU-Net, PHTrans, and 3D U-Net) on three public multiorgan (aorta, gallbladder, kidney, liver, pancreas, spleen, stomach, etc.) and multimodal (CT, PET-CT, and MRI) data sets of medical segmentation decathlon (MSD) brain tumor, multiatlas labeling beyond cranial vault (BCV), and automated cardiac diagnosis challenge (ACDC), accentuating its adaptability. These results reflect the potential of MPSTrans to advance the state-of-the-art in biomedical imaging analysis, which would offer a robust tool for enhanced diagnostic capacity.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"3 8","pages":"522–533"},"PeriodicalIF":5.7000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/cbmi.4c00102","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbmi.4c00102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate and automated segmentation of 3D biomedical images is a sophisticated imperative in clinical diagnosis, imaging-guided surgery, and prognosis judgment. Although the burgeoning of deep learning technologies has fostered smart segmentators, the successive and simultaneous garnering global and local features still remains challenging, which is essential for an exact and efficient imageological assay. To this end, a segmentation solution dubbed the mixed parallel shunted transformer (MPSTrans) is developed here, highlighting 3D-MPST blocks in a U-form framework. It enabled not only comprehensive characteristic capture and multiscale slice synchronization but also deep supervision in the decoder to facilitate the fetching of hierarchical representations. Performing on an unpublished colon cancer data set, this model achieved an impressive increase in dice similarity coefficient (DSC) and a 1.718 mm decease in Hausdorff distance at 95% (HD95), alongside a substantial shrink of computational load of 56.7% in giga floating-point operations per second (GFLOPs). Meanwhile, MPSTrans outperforms other mainstream methods (Swin UNETR, UNETR, nnU-Net, PHTrans, and 3D U-Net) on three public multiorgan (aorta, gallbladder, kidney, liver, pancreas, spleen, stomach, etc.) and multimodal (CT, PET-CT, and MRI) data sets of medical segmentation decathlon (MSD) brain tumor, multiatlas labeling beyond cranial vault (BCV), and automated cardiac diagnosis challenge (ACDC), accentuating its adaptability. These results reflect the potential of MPSTrans to advance the state-of-the-art in biomedical imaging analysis, which would offer a robust tool for enhanced diagnostic capacity.
期刊介绍:
Chemical & Biomedical Imaging is a peer-reviewed open access journal devoted to the publication of cutting-edge research papers on all aspects of chemical and biomedical imaging. This interdisciplinary field sits at the intersection of chemistry physics biology materials engineering and medicine. The journal aims to bring together researchers from across these disciplines to address cutting-edge challenges of fundamental research and applications.Topics of particular interest include but are not limited to:Imaging of processes and reactionsImaging of nanoscale microscale and mesoscale materialsImaging of biological interactions and interfacesSingle-molecule and cellular imagingWhole-organ and whole-body imagingMolecular imaging probes and contrast agentsBioluminescence chemiluminescence and electrochemiluminescence imagingNanophotonics and imagingChemical tools for new imaging modalitiesChemical and imaging techniques in diagnosis and therapyImaging-guided drug deliveryAI and machine learning assisted imaging