Khurram Abbas, Usama, Weixia Qin, Haimei Zhu, Yuan Li, Zijian Li, Muhammad Imran and Hong Bi*,
{"title":"Exploring Carbon Dot as a Fluorescent Nanoprobe for Imaging of Plant Cells under Salt/Heat-Induced Stress Conditions","authors":"Khurram Abbas, Usama, Weixia Qin, Haimei Zhu, Yuan Li, Zijian Li, Muhammad Imran and Hong Bi*, ","doi":"10.1021/cbmi.4c00109","DOIUrl":null,"url":null,"abstract":"<p >Carbon dots (CDs) have emerged as promising nanomaterials for bioimaging and stress monitoring due to their unique optical and functional properties. CDs were synthesized using citric acid and <i>o</i>-phenylenediamine via microwave-assisted heating, named as CP-CDs. High-resolution transmission electron microscopy observed an average particle size of 3.65 ± 0.40 nm with graphitic cores. Raman spectroscopy and Fourier transform infrared spectroscopy confirmed diverse functional groups. The CDs exhibited excitation-dependent fluorescence with a peak emission at 432 nm, a high quantum yield of 54.91%, and a fluorescence lifetime of 9.50 ± 0.15 ns, making them highly suitable for bioimaging. Confocal microscopy demonstrated tissue-specific localization in lettuce plant cells. In stem cells, CP-CDs predominantly targeted mitochondria, confirmed by a colocalization with Mito-Tracker Red. In contrast, leaf cells showed selective accumulation at the stomatal openings. Under salt- and heat-induced stress, stem cells exhibited an increase in mitochondrial fluorescence, indicating stress-responsive interactions, whereas leaf cells maintained consistent stomatal localization. Further, enhanced fluorescence from chloroplasts under stress conditions suggested synergistic effects with chlorophyll. Also, stress conditions caused CP-CDs to accumulate at the cell boundaries in stem cells, highlighting their sensitivity to stress-induced changes. These findings demonstrate the optical properties, tissue-specific uptake, and organelle-level localization of CP-CDs, underlining their potential for bioimaging, stress detection, and targeted delivery systems in plants.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"3 8","pages":"534–546"},"PeriodicalIF":5.7000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/cbmi.4c00109","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbmi.4c00109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon dots (CDs) have emerged as promising nanomaterials for bioimaging and stress monitoring due to their unique optical and functional properties. CDs were synthesized using citric acid and o-phenylenediamine via microwave-assisted heating, named as CP-CDs. High-resolution transmission electron microscopy observed an average particle size of 3.65 ± 0.40 nm with graphitic cores. Raman spectroscopy and Fourier transform infrared spectroscopy confirmed diverse functional groups. The CDs exhibited excitation-dependent fluorescence with a peak emission at 432 nm, a high quantum yield of 54.91%, and a fluorescence lifetime of 9.50 ± 0.15 ns, making them highly suitable for bioimaging. Confocal microscopy demonstrated tissue-specific localization in lettuce plant cells. In stem cells, CP-CDs predominantly targeted mitochondria, confirmed by a colocalization with Mito-Tracker Red. In contrast, leaf cells showed selective accumulation at the stomatal openings. Under salt- and heat-induced stress, stem cells exhibited an increase in mitochondrial fluorescence, indicating stress-responsive interactions, whereas leaf cells maintained consistent stomatal localization. Further, enhanced fluorescence from chloroplasts under stress conditions suggested synergistic effects with chlorophyll. Also, stress conditions caused CP-CDs to accumulate at the cell boundaries in stem cells, highlighting their sensitivity to stress-induced changes. These findings demonstrate the optical properties, tissue-specific uptake, and organelle-level localization of CP-CDs, underlining their potential for bioimaging, stress detection, and targeted delivery systems in plants.
期刊介绍:
Chemical & Biomedical Imaging is a peer-reviewed open access journal devoted to the publication of cutting-edge research papers on all aspects of chemical and biomedical imaging. This interdisciplinary field sits at the intersection of chemistry physics biology materials engineering and medicine. The journal aims to bring together researchers from across these disciplines to address cutting-edge challenges of fundamental research and applications.Topics of particular interest include but are not limited to:Imaging of processes and reactionsImaging of nanoscale microscale and mesoscale materialsImaging of biological interactions and interfacesSingle-molecule and cellular imagingWhole-organ and whole-body imagingMolecular imaging probes and contrast agentsBioluminescence chemiluminescence and electrochemiluminescence imagingNanophotonics and imagingChemical tools for new imaging modalitiesChemical and imaging techniques in diagnosis and therapyImaging-guided drug deliveryAI and machine learning assisted imaging