High-Performance Ether-Free Poly(terphenyl-co-9,9-dimethylfluorene-ethylimidazole) Membranes for High Temperature Proton Exchange Membrane Fuel Cells

IF 7.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lei Li, Qi Liao, Ruixuan Lv, Lele Wang, Lili Sui, Jin Wang* and Jingshuai Yang*, 
{"title":"High-Performance Ether-Free Poly(terphenyl-co-9,9-dimethylfluorene-ethylimidazole) Membranes for High Temperature Proton Exchange Membrane Fuel Cells","authors":"Lei Li,&nbsp;Qi Liao,&nbsp;Ruixuan Lv,&nbsp;Lele Wang,&nbsp;Lili Sui,&nbsp;Jin Wang* and Jingshuai Yang*,&nbsp;","doi":"10.1021/acssuschemeng.5c06214","DOIUrl":null,"url":null,"abstract":"<p >High-temperature proton exchange membranes (HT-PEMs) are essential components in HT-PEM fuel cells. Although phosphoric acid (PA)-doped polybenzimidazole (PBI) membranes are widely used, the development of HT-PEMs that are more cost-effective, easier to synthesize, and offer enhanced physicochemical performance remains a critical research focus. In this study, we report a new class of ether-free poly(terphenyl-<i>co</i>-9,9′-dimethylfluorene-ethylimidazole) copolymers synthesized via a superacid-catalyzed Friedel–Crafts hydroxyalkylation reaction. Rigid <i>p</i>-terphenyl (TP) and sterically twisted 9,9′-dimethylfluorene (DMF) segments were systematically copolymerized with 1-ethyl-2-imidazolecarbaldehyde (EtIm) to modulate the polymer backbone architecture and membrane performance. The incorporation of DMF units significantly enhances acid doping capacity and proton conductivity while maintaining good mechanical integrity. Among the copolymers, the optimized P(75%TP-25%DMF-EtIm) membrane achieves an acid doping content of 201%, a high proton conductivity of 124 mS cm<sup>–1</sup> at 180 °C, and a tensile strength of 6.02 MPa. When applied in an H<sub>2</sub>–O<sub>2</sub> fuel cell under anhydrous conditions and without backpressure, this membrane delivers an impressive peak power density of 1060 mW cm<sup>–2</sup> at 200 °C. These results demonstrate the great promise of ether-free P(<i>x</i>%TP-<i>y</i>%DMF-EtIm) based copolymers as next-generation HT-PEMs, offering a compelling alternative to conventional PBI membranes for high-performance fuel cell applications.</p>","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"13 33","pages":"13656–13666"},"PeriodicalIF":7.3000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssuschemeng.5c06214","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High-temperature proton exchange membranes (HT-PEMs) are essential components in HT-PEM fuel cells. Although phosphoric acid (PA)-doped polybenzimidazole (PBI) membranes are widely used, the development of HT-PEMs that are more cost-effective, easier to synthesize, and offer enhanced physicochemical performance remains a critical research focus. In this study, we report a new class of ether-free poly(terphenyl-co-9,9′-dimethylfluorene-ethylimidazole) copolymers synthesized via a superacid-catalyzed Friedel–Crafts hydroxyalkylation reaction. Rigid p-terphenyl (TP) and sterically twisted 9,9′-dimethylfluorene (DMF) segments were systematically copolymerized with 1-ethyl-2-imidazolecarbaldehyde (EtIm) to modulate the polymer backbone architecture and membrane performance. The incorporation of DMF units significantly enhances acid doping capacity and proton conductivity while maintaining good mechanical integrity. Among the copolymers, the optimized P(75%TP-25%DMF-EtIm) membrane achieves an acid doping content of 201%, a high proton conductivity of 124 mS cm–1 at 180 °C, and a tensile strength of 6.02 MPa. When applied in an H2–O2 fuel cell under anhydrous conditions and without backpressure, this membrane delivers an impressive peak power density of 1060 mW cm–2 at 200 °C. These results demonstrate the great promise of ether-free P(x%TP-y%DMF-EtIm) based copolymers as next-generation HT-PEMs, offering a compelling alternative to conventional PBI membranes for high-performance fuel cell applications.

Abstract Image

高温质子交换膜燃料电池用高性能无醚聚(terphenyl-co-9,9-二甲基芴-乙基咪唑)膜
高温质子交换膜(HT-PEM)是高温质子交换膜燃料电池的重要部件。虽然磷酸(PA)掺杂聚苯并咪唑(PBI)膜被广泛应用,但开发成本更低、更容易合成、物理化学性能更好的HT-PEMs仍然是一个重要的研究热点。在这项研究中,我们报道了一类新的无醚聚(terphenyl-co-9,9 ' -二甲基芴-乙基咪唑)共聚物通过超强酸催化的Friedel-Crafts羟基烷基化反应合成。将刚性对terphenyl (TP)和立体扭曲的9,9 ' -二甲基芴(DMF)段与1-乙基-2-咪唑聚甲醛(EtIm)共聚,以调节聚合物骨架结构和膜性能。DMF单元的掺入显著提高了酸掺杂能力和质子电导率,同时保持了良好的机械完整性。在共聚物中,优化后的P(75%TP-25%DMF-EtIm)膜酸掺杂含量为201%,在180 ℃时质子电导率为124 mS cm-1,抗拉强度为6.02 MPa。当应用于H2-O2燃料电池在无水条件下无背压时,该膜在200 °C下可提供1060 mW cm-2的峰值功率密度。这些结果证明了无醚P(x%TP-y%DMF-EtIm)基共聚物作为下一代ht - pem的巨大前景,为高性能燃料电池应用提供了传统PBI膜的令人信服的替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信