Topological Invariants for Linear Codes and APN Functions

IF 2.9 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Zijian Zhou;Kangquan Li;Yue Zhou
{"title":"Topological Invariants for Linear Codes and APN Functions","authors":"Zijian Zhou;Kangquan Li;Yue Zhou","doi":"10.1109/TIT.2025.3583010","DOIUrl":null,"url":null,"abstract":"In this paper, we try to apply methods from topological data analysis (TDA) to study geometric properties invariant under code equivalence transformation, especially for the linear codes associated with almost perfect nonlinear (APN) functions which offer optimal resistance to differential attacks and are very important in the design of block ciphers in cryptography. By employing persistent homology from TDA and tools from graph theory, we present new CCZ-invariants for APN functions. Some of them are computationally efficient and sufficient to distinguish many known APN functions, including <inline-formula> <tex-math>$x^{3}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$x^{9}$ </tex-math></inline-formula> (resp. <inline-formula> <tex-math>$x^{33}$ </tex-math></inline-formula>) over <inline-formula> <tex-math>$\\mathbb {F}_{2^{7}}$ </tex-math></inline-formula> (resp. <inline-formula> <tex-math>$\\mathbb {F}_{2^{9}}$ </tex-math></inline-formula>) for which previously known invariants fail to do so.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 9","pages":"6771-6784"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11051006/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we try to apply methods from topological data analysis (TDA) to study geometric properties invariant under code equivalence transformation, especially for the linear codes associated with almost perfect nonlinear (APN) functions which offer optimal resistance to differential attacks and are very important in the design of block ciphers in cryptography. By employing persistent homology from TDA and tools from graph theory, we present new CCZ-invariants for APN functions. Some of them are computationally efficient and sufficient to distinguish many known APN functions, including $x^{3}$ and $x^{9}$ (resp. $x^{33}$ ) over $\mathbb {F}_{2^{7}}$ (resp. $\mathbb {F}_{2^{9}}$ ) for which previously known invariants fail to do so.
线性码和APN函数的拓扑不变量
本文尝试应用拓扑数据分析(TDA)的方法来研究编码等价变换下的几何不变性,特别是与几乎完全非线性(APN)函数相关联的线性编码具有最优的抗差分攻击能力,在密码学中的分组密码设计中具有重要意义。利用图论的工具和TDA的持久同调,给出了APN函数的新的ccz不变量。其中一些计算效率高,足以区分许多已知的APN函数,包括$x^{3}$和$x^{9}$。$x^{7} $) / $\mathbb {F}_{2^{7}}$$\mathbb {F}_{2^{9}}$),先前已知的不变量无法做到这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信