Monte Carlo Modelling of Boltzmann Equation in Space Plasma With Kappa Velocity Distribution Function

IF 2.9 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
I. A. Barghouthi, Q. S. Atawnah, M. J. Jwailes
{"title":"Monte Carlo Modelling of Boltzmann Equation in Space Plasma With Kappa Velocity Distribution Function","authors":"I. A. Barghouthi,&nbsp;Q. S. Atawnah,&nbsp;M. J. Jwailes","doi":"10.1029/2025JA033888","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a Monte Carlo simulation framework for analysing ion dynamics in space plasmas governed by non-Maxwellian Kappa velocity distributions, where we use the Monte Carlo method to solve the Boltzmann equation under the influence of gravitational, electric, and magnetic fields, while accounting for Coulomb collisions, wave-particle interactions, or both together. A central innovation lies in the derivation of the main algorithm formulas, that generate the ion velocities for both drifting and non-drifting Kappa velocity distributions. The algorithm rigorously incorporates interaction effects through friction and diffusion coefficients, adapting the Fokker-Planck formalism for Coulomb collisions and the diffusion equation for wave-particle interactions—each explicitly tailored for Kappa-distributed plasmas. Through this approach, the model demonstrates its capability to produce essential plasma characteristics, including density, drift velocity, parallel and perpendicular temperatures, and parallel and perpendicular heat fluxes, by linking non-thermal particle behavior with macroscopic plasma properties.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 8","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025JA033888","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a Monte Carlo simulation framework for analysing ion dynamics in space plasmas governed by non-Maxwellian Kappa velocity distributions, where we use the Monte Carlo method to solve the Boltzmann equation under the influence of gravitational, electric, and magnetic fields, while accounting for Coulomb collisions, wave-particle interactions, or both together. A central innovation lies in the derivation of the main algorithm formulas, that generate the ion velocities for both drifting and non-drifting Kappa velocity distributions. The algorithm rigorously incorporates interaction effects through friction and diffusion coefficients, adapting the Fokker-Planck formalism for Coulomb collisions and the diffusion equation for wave-particle interactions—each explicitly tailored for Kappa-distributed plasmas. Through this approach, the model demonstrates its capability to produce essential plasma characteristics, including density, drift velocity, parallel and perpendicular temperatures, and parallel and perpendicular heat fluxes, by linking non-thermal particle behavior with macroscopic plasma properties.

Abstract Image

Abstract Image

Abstract Image

基于Kappa速度分布函数的空间等离子体玻尔兹曼方程蒙特卡罗模拟
本文提出了一个蒙特卡罗模拟框架,用于分析由非麦克斯韦卡帕速度分布控制的空间等离子体中的离子动力学,其中我们使用蒙特卡罗方法来解决重力,电场和磁场影响下的玻尔兹曼方程,同时考虑库仑碰撞,波粒相互作用,或两者一起。核心创新在于主要算法公式的推导,生成漂移和非漂移Kappa速度分布的离子速度。该算法通过摩擦和扩散系数严格地结合了相互作用效应,采用了库仑碰撞的福克-普朗克形式和波粒相互作用的扩散方程——每一个都明确地为kappa分布的等离子体定制。通过这种方法,该模型通过将非热粒子行为与宏观等离子体特性联系起来,证明了它能够产生基本的等离子体特性,包括密度、漂移速度、平行和垂直温度、平行和垂直热流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信