Cytotoxic Impact of Catalytic Activity and Heating Efficiency of Manganese Ferrite Nanoparticles With Different Particle Sizes for Magnetic Fluid Hyperthermia
Marco A. Morales Ovalle, Mariana Raineri, Marcelo Vasquez Mansilla, Elin Lilian Winkler, Roberto Daniel Zysler, Enio Lima Jr, Teobaldo Enrique Torres
{"title":"Cytotoxic Impact of Catalytic Activity and Heating Efficiency of Manganese Ferrite Nanoparticles With Different Particle Sizes for Magnetic Fluid Hyperthermia","authors":"Marco A. Morales Ovalle, Mariana Raineri, Marcelo Vasquez Mansilla, Elin Lilian Winkler, Roberto Daniel Zysler, Enio Lima Jr, Teobaldo Enrique Torres","doi":"10.1002/jbm.b.35638","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Magnetic nanoparticles have garnered significant attention in cancer treatment for their dual ability to generate localized heat under an alternating magnetic field and catalyze heterogeneous Fenton-based reactions on their surface. These reactions produce free radicals in mildly acidic and reducing environments, such as the tumor microenvironment, leading to oxidative stress in cancer cells. The synergistic combination of magnetic hyperthermia and catalytic activity enhances oxidative stress induction, underscoring the importance of understanding the cytotoxic effects of this approach. In this study, we performed in vitro toxicity assays on the HepG2 cell line to evaluate cytotoxicity and lipid peroxidation induced by hyperthermia using manganese ferrite nanoparticles with mean sizes of 12 and 28 nm. Magnetic hyperthermia efficiency, quantified by Specific Loss Power (SLP), and catalytic activity, assessed through free radical generation using electron paramagnetic resonance (EPR) and substrate oxidation rates via UV–visible spectroscopy, were characterized prior to the biological experiments. Our results showed that the 28 nm nanoparticles achieved a temperature increase of approximately 11.5°C, compared to 3.6°C for the 12 nm particles. Correspondingly, higher cell death was observed for the 28 nm nanoparticles following magnetic fluid hyperthermia treatment. However, lipid peroxidation was more pronounced with the 12 nm nanoparticles, attributed to their larger surface-to-volume ratio enhancing catalytic performance. In conclusion, nanoparticle size critically influences both magnetic and catalytic properties, and optimizing these parameters is essential for maximizing therapeutic efficacy in magnetic fluid hyperthermia.</p>\n </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 9","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35638","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetic nanoparticles have garnered significant attention in cancer treatment for their dual ability to generate localized heat under an alternating magnetic field and catalyze heterogeneous Fenton-based reactions on their surface. These reactions produce free radicals in mildly acidic and reducing environments, such as the tumor microenvironment, leading to oxidative stress in cancer cells. The synergistic combination of magnetic hyperthermia and catalytic activity enhances oxidative stress induction, underscoring the importance of understanding the cytotoxic effects of this approach. In this study, we performed in vitro toxicity assays on the HepG2 cell line to evaluate cytotoxicity and lipid peroxidation induced by hyperthermia using manganese ferrite nanoparticles with mean sizes of 12 and 28 nm. Magnetic hyperthermia efficiency, quantified by Specific Loss Power (SLP), and catalytic activity, assessed through free radical generation using electron paramagnetic resonance (EPR) and substrate oxidation rates via UV–visible spectroscopy, were characterized prior to the biological experiments. Our results showed that the 28 nm nanoparticles achieved a temperature increase of approximately 11.5°C, compared to 3.6°C for the 12 nm particles. Correspondingly, higher cell death was observed for the 28 nm nanoparticles following magnetic fluid hyperthermia treatment. However, lipid peroxidation was more pronounced with the 12 nm nanoparticles, attributed to their larger surface-to-volume ratio enhancing catalytic performance. In conclusion, nanoparticle size critically influences both magnetic and catalytic properties, and optimizing these parameters is essential for maximizing therapeutic efficacy in magnetic fluid hyperthermia.
期刊介绍:
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats:
• original research reports
• short research and development reports
• scientific reviews
• current concepts articles
• special reports
• editorials
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.