Hang Zhou
(, ), Xin Yang
(, ), Zhengxi Ran
(, ), Chuanjin Pu
(, ), Dingjun Xiao
(, ), Moujin Lin
(, ), Han Zhao
(, )
{"title":"Numerical study on blasting crack propagation and coalescence in granite rock","authors":"Hang Zhou \n (, ), Xin Yang \n (, ), Zhengxi Ran \n (, ), Chuanjin Pu \n (, ), Dingjun Xiao \n (, ), Moujin Lin \n (, ), Han Zhao \n (, )","doi":"10.1007/s10409-025-24781-x","DOIUrl":null,"url":null,"abstract":"<div><p>Blasting-induced crack networks considerably impact the extent of rock fragmentation and the evaluative construction qualities of deep underground facilities. Based on the Hoek-Brown criterion, an integrated strategy of the Johnson-Holmquist (JH-2) model, failure criterion, and crack softening failure model was used to numerically explore the influences of borehole distance, time interval, and confining pressure on blasting crack propagation and coalescence. First, one-borehole blasting was used to reproduce the crack propagation results under free and non-reflecting boundaries, and the good results provided compelling evidence of the reliability of this strategy. For the two- and three-borehole blasting, it was discovered that high confining pressure paired with the large time interval was not favorable for crack coalescence. Therefore, simultaneous initiation is an optimal plan, which is not dependent on time interval and confining pressure. Simultaneously, if the borehole distance remains unvaried, the predominant influence on crack coalescence transitions from the time interval to the confining pressure as these two factors increase. Moreover, crack coalescence takes place when the tensile stress field of one crack is not converted into the compressive stress field of another crack, and crack coalescence has two key mechanisms: mutual and indirect modes. In addition, the dependence of controlling parameter on coalescence mode has been discussed.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"42 5","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-025-24781-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Blasting-induced crack networks considerably impact the extent of rock fragmentation and the evaluative construction qualities of deep underground facilities. Based on the Hoek-Brown criterion, an integrated strategy of the Johnson-Holmquist (JH-2) model, failure criterion, and crack softening failure model was used to numerically explore the influences of borehole distance, time interval, and confining pressure on blasting crack propagation and coalescence. First, one-borehole blasting was used to reproduce the crack propagation results under free and non-reflecting boundaries, and the good results provided compelling evidence of the reliability of this strategy. For the two- and three-borehole blasting, it was discovered that high confining pressure paired with the large time interval was not favorable for crack coalescence. Therefore, simultaneous initiation is an optimal plan, which is not dependent on time interval and confining pressure. Simultaneously, if the borehole distance remains unvaried, the predominant influence on crack coalescence transitions from the time interval to the confining pressure as these two factors increase. Moreover, crack coalescence takes place when the tensile stress field of one crack is not converted into the compressive stress field of another crack, and crack coalescence has two key mechanisms: mutual and indirect modes. In addition, the dependence of controlling parameter on coalescence mode has been discussed.
期刊介绍:
Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences.
Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences.
In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest.
Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics