Robust Optimal Control of Inverter-Based Resources Under Grid-Forming Operation

IF 3.9 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Sina Ameli;Olugbenga Moses Anubi;Fang Peng
{"title":"Robust Optimal Control of Inverter-Based Resources Under Grid-Forming Operation","authors":"Sina Ameli;Olugbenga Moses Anubi;Fang Peng","doi":"10.1109/TCST.2025.3560569","DOIUrl":null,"url":null,"abstract":"In this article, we propose and solve a robust control problem (RCP) for inverter-based resources (IBRs) under grid-forming operation to regulate the voltage and frequency. One major challenge is to mitigate the effect of unmeasurable load current disturbance and grid and load parametric uncertainties. Moreover, strong coupling between the state variables on both the ac and dc sides, as well as between the modulating control input and the frequency impose additional challenges. To address these challenges, first, an RCP is solved at the high level via transformation into an equivalent, but more tractable, optimal control problem (OCP). Then, in the middle layer, a voltage control law is designed on the one side, and a frequency control law on the other side. Finally, an inverter filter current controller is designed to complete the controller design. Theoretical results are derived to provide stability guarantees for the resulting closed-loop system. Specifically, we show that the inverter current injection error is dissipative, the frequency error is semi-globally asymptotically stable, and the inverter terminal voltage error is globally asymptotically stable, all with provided sufficient conditions. Numerical simulation experiments are used to validate the theoretical claims. Furthermore, the developed controller is compared with existing work in the literature to show the efficacy of the proposed approach.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"33 5","pages":"1851-1863"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10980646/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we propose and solve a robust control problem (RCP) for inverter-based resources (IBRs) under grid-forming operation to regulate the voltage and frequency. One major challenge is to mitigate the effect of unmeasurable load current disturbance and grid and load parametric uncertainties. Moreover, strong coupling between the state variables on both the ac and dc sides, as well as between the modulating control input and the frequency impose additional challenges. To address these challenges, first, an RCP is solved at the high level via transformation into an equivalent, but more tractable, optimal control problem (OCP). Then, in the middle layer, a voltage control law is designed on the one side, and a frequency control law on the other side. Finally, an inverter filter current controller is designed to complete the controller design. Theoretical results are derived to provide stability guarantees for the resulting closed-loop system. Specifically, we show that the inverter current injection error is dissipative, the frequency error is semi-globally asymptotically stable, and the inverter terminal voltage error is globally asymptotically stable, all with provided sufficient conditions. Numerical simulation experiments are used to validate the theoretical claims. Furthermore, the developed controller is compared with existing work in the literature to show the efficacy of the proposed approach.
并网工况下基于逆变器的资源鲁棒最优控制
在本文中,我们提出并解决了逆变器资源(IBRs)在并网运行中对电压和频率进行调节的鲁棒控制问题(RCP)。一个主要的挑战是减轻不可测量的负载电流干扰和电网和负载参数不确定性的影响。此外,交流和直流两侧的状态变量之间以及调制控制输入和频率之间的强耦合带来了额外的挑战。为了解决这些挑战,首先,通过将RCP转换为等效但更易于处理的最优控制问题(OCP),在高层次上解决RCP。然后,在中间层,一边设计电压控制律,另一边设计频率控制律。最后,设计了逆变滤波器电流控制器,完成了控制器的设计。理论结果的推导为闭环系统的稳定性提供了保证。具体而言,我们证明了逆变器电流注入误差是耗散的,频率误差是半全局渐近稳定的,逆变器终端电压误差是全局渐近稳定的,这些都提供了充分条件。数值模拟实验验证了理论结论。此外,将所开发的控制器与文献中的现有工作进行比较,以显示所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Control Systems Technology
IEEE Transactions on Control Systems Technology 工程技术-工程:电子与电气
CiteScore
10.70
自引率
2.10%
发文量
218
审稿时长
6.7 months
期刊介绍: The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信