Achieving the Fundamental Limit of Lossless Analog Compression via Polarization

IF 2.9 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Shuai Yuan;Liuquan Yao;Yuan Li;Huazi Zhang;Jun Wang;Wen Tong;Zhiming Ma
{"title":"Achieving the Fundamental Limit of Lossless Analog Compression via Polarization","authors":"Shuai Yuan;Liuquan Yao;Yuan Li;Huazi Zhang;Jun Wang;Wen Tong;Zhiming Ma","doi":"10.1109/TIT.2025.3582110","DOIUrl":null,"url":null,"abstract":"In this paper, we study the lossless analog compression for <italic>i.i.d.</i> discrete-continuous mixed signals via the polarization-based framework. We prove that for discrete-continuous mixed source, the error probability of maximum a posteriori (MAP) estimation polarizes under the Hadamard transform, which extends the polarization phenomenon to analog domain. Building on this insight, we propose the partial Hadamard compression and develop the corresponding analog successive cancellation (SC) decoder. The proposed scheme consists of deterministic measurement matrices and non-iterative reconstruction algorithm, providing benefits in both space and computational complexity. Using the polarization of error probability, we prove that our approach achieves the information-theoretical limit for lossless analog compression developed by Wu and Verdú.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 9","pages":"7367-7395"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11048649/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the lossless analog compression for i.i.d. discrete-continuous mixed signals via the polarization-based framework. We prove that for discrete-continuous mixed source, the error probability of maximum a posteriori (MAP) estimation polarizes under the Hadamard transform, which extends the polarization phenomenon to analog domain. Building on this insight, we propose the partial Hadamard compression and develop the corresponding analog successive cancellation (SC) decoder. The proposed scheme consists of deterministic measurement matrices and non-iterative reconstruction algorithm, providing benefits in both space and computational complexity. Using the polarization of error probability, we prove that our approach achieves the information-theoretical limit for lossless analog compression developed by Wu and Verdú.
通过极化实现无损模拟压缩的基本极限
本文研究了基于极化框架的离散-连续混合信号的模拟量无损压缩。证明了对于离散-连续混合源,在Hadamard变换下,最大后检估计的误差概率发生极化,将极化现象扩展到模拟域。在此基础上,我们提出了部分Hadamard压缩,并开发了相应的模拟连续抵消(SC)解码器。该方案由确定性测量矩阵和非迭代重建算法组成,在空间和计算复杂度上都有优势。利用误差概率的极化,我们证明了我们的方法达到了Wu和Verdú开发的无损模拟压缩的信息理论极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信