{"title":"Uhlmann’s Theorem for Relative Entropies","authors":"Giulia Mazzola;David Sutter;Renato Renner","doi":"10.1109/TIT.2025.3591775","DOIUrl":null,"url":null,"abstract":"Uhlmann’s theorem states that, for any two quantum states <inline-formula> <tex-math>$\\rho _{AB}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$\\sigma _{A}$ </tex-math></inline-formula>, there exists an extension <inline-formula> <tex-math>$\\sigma _{AB}$ </tex-math></inline-formula> of <inline-formula> <tex-math>$\\sigma _{A}$ </tex-math></inline-formula> such that the fidelity between <inline-formula> <tex-math>$\\rho _{AB}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$\\sigma _{AB}$ </tex-math></inline-formula> equals the fidelity between their reduced states <inline-formula> <tex-math>$\\rho _{A}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$\\sigma _{A}$ </tex-math></inline-formula>. In this work, we generalize Uhlmann’s theorem to <inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>-Rényi relative entropies for <inline-formula> <tex-math>$\\alpha \\in \\left [{{\\frac {1}{2},\\infty }}\\right]$ </tex-math></inline-formula>, a family of divergences that encompasses fidelity, relative entropy, and max-relative entropy corresponding to <inline-formula> <tex-math>$\\alpha =\\frac {1}{2}$ </tex-math></inline-formula>, <inline-formula> <tex-math>$\\alpha =1$ </tex-math></inline-formula>, and <inline-formula> <tex-math>$\\alpha =\\infty $ </tex-math></inline-formula>, respectively.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 9","pages":"7039-7051"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11090167","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11090167/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Uhlmann’s theorem states that, for any two quantum states $\rho _{AB}$ and $\sigma _{A}$ , there exists an extension $\sigma _{AB}$ of $\sigma _{A}$ such that the fidelity between $\rho _{AB}$ and $\sigma _{AB}$ equals the fidelity between their reduced states $\rho _{A}$ and $\sigma _{A}$ . In this work, we generalize Uhlmann’s theorem to $\alpha $ -Rényi relative entropies for $\alpha \in \left [{{\frac {1}{2},\infty }}\right]$ , a family of divergences that encompasses fidelity, relative entropy, and max-relative entropy corresponding to $\alpha =\frac {1}{2}$ , $\alpha =1$ , and $\alpha =\infty $ , respectively.
期刊介绍:
The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.