{"title":"Optimal Tomography of Quantum Markov Chains via Continuity of Petz Recovery States","authors":"Li Gao;Nengkun Yu","doi":"10.1109/TIT.2025.3584694","DOIUrl":null,"url":null,"abstract":"In this work, we show that the Petz recovered state <inline-formula> <tex-math>$\\rho _{BC}^{1/2}(\\rho _{B}^{-1/2}\\rho _{AB}\\rho _{B}^{-1/2}\\otimes I_{C})\\rho _{BC}^{1/2}$ </tex-math></inline-formula> is continuous regarding its marginals <inline-formula> <tex-math>$\\rho _{AB}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$\\rho _{BC}$ </tex-math></inline-formula>. In terms of infidelity <inline-formula> <tex-math>$1-F(\\rho,\\sigma)=1-\\mathop {\\mathrm {tr}}\\nolimits |\\sqrt {\\rho }\\sqrt {\\sigma }|$ </tex-math></inline-formula> and trace norm <inline-formula> <tex-math>$\\parallel \\! \\rho -\\sigma \\! \\parallel _{1}=\\mathop {\\mathrm {tr}}\\nolimits (|\\rho -\\sigma |)$ </tex-math></inline-formula>, we obtain the following dimension-independent estimate: <inline-formula> <tex-math>$1-F(\\rho _{AB},\\sigma _{AB}) \\le \\delta \\hspace {.1cm}, 1-F(\\rho _{BC},\\sigma _{BC}) \\le \\delta \\hspace {.1cm}\\Longrightarrow 1-F(\\rho _{ABC},\\sigma _{ABC})\\le 18\\delta, \\parallel \\! \\rho _{AB}-\\sigma _{AB} \\! \\parallel _{1} \\le \\varepsilon \\hspace {.1cm}, \\parallel \\! \\rho _{BC}-\\sigma _{BC} \\! \\parallel _{1} \\le \\varepsilon \\hspace {.1cm}\\Longrightarrow \\parallel \\! \\rho _{ABC}-\\sigma _{ABC} \\! \\parallel _{}\\le \\varepsilon +4\\varepsilon ^{\\frac {1}{2}}$ </tex-math></inline-formula>. As applications, we obtain the following applications in tomography of quantum Markov chains: 1) The sample complexity of quantum Markov chain tomography, i.e., how many copies of an unknown quantum Markov chain are necessary and sufficient to determine the state, is <inline-formula> <tex-math>$\\tilde {\\Theta }\\left ({{\\frac {(d_{A}^{2}+d_{C}^{2})d_{B}^{2}}{\\delta }}}\\right)$ </tex-math></inline-formula>, and <inline-formula> <tex-math>$\\tilde {\\Theta }\\left ({{\\frac {(d_{A}^{2}+d_{C}^{2})d_{B}^{2}}{\\epsilon ^{2}}}}\\right)$ </tex-math></inline-formula>, where <inline-formula> <tex-math>$\\delta $ </tex-math></inline-formula> denotes infidelity error and <inline-formula> <tex-math>$\\epsilon $ </tex-math></inline-formula> denotes trace distance. 2) The sample complexity of quantum Markov chain certification, i.e., to certify whether a tripartite state equals a given quantum Markov chain <inline-formula> <tex-math>$\\sigma _{ABC}$ </tex-math></inline-formula> or at least <inline-formula> <tex-math>$\\delta $ </tex-math></inline-formula>-far from <inline-formula> <tex-math>$\\sigma _{ABC}$ </tex-math></inline-formula>, is <inline-formula> <tex-math>${\\Theta }\\left ({{\\frac {(d_{A}+d_{C})d_{B}}{\\delta }}}\\right)$ </tex-math></inline-formula>, and <inline-formula> <tex-math>${\\Theta }\\left ({{\\frac {(d_{A}+d_{C})d_{B}}{\\epsilon ^{2}}}}\\right)$ </tex-math></inline-formula>. 3) <inline-formula> <tex-math>$\\tilde {O}\\left ({{\\frac {\\min \\{d_{A}d_{B}^{3}d_{C}^{3},d_{A}^{3}d_{B}^{3}d_{C}\\}}{\\epsilon ^{2}}}}\\right)$ </tex-math></inline-formula> copies of sample are sufficient to certify whether <inline-formula> <tex-math>$\\rho _{ABC}$ </tex-math></inline-formula> is a quantum Markov chain or <inline-formula> <tex-math>$\\epsilon $ </tex-math></inline-formula>-far from its Petz recovered state in trace distance. This implies that full state tomography is not always necessary for testing whether <inline-formula> <tex-math>$\\rho _{ABC}$ </tex-math></inline-formula> is a quantum Markov chain (equals to its Petz recovered state) or not.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 9","pages":"7016-7028"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11062489/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we show that the Petz recovered state $\rho _{BC}^{1/2}(\rho _{B}^{-1/2}\rho _{AB}\rho _{B}^{-1/2}\otimes I_{C})\rho _{BC}^{1/2}$ is continuous regarding its marginals $\rho _{AB}$ and $\rho _{BC}$ . In terms of infidelity $1-F(\rho,\sigma)=1-\mathop {\mathrm {tr}}\nolimits |\sqrt {\rho }\sqrt {\sigma }|$ and trace norm $\parallel \! \rho -\sigma \! \parallel _{1}=\mathop {\mathrm {tr}}\nolimits (|\rho -\sigma |)$ , we obtain the following dimension-independent estimate: $1-F(\rho _{AB},\sigma _{AB}) \le \delta \hspace {.1cm}, 1-F(\rho _{BC},\sigma _{BC}) \le \delta \hspace {.1cm}\Longrightarrow 1-F(\rho _{ABC},\sigma _{ABC})\le 18\delta, \parallel \! \rho _{AB}-\sigma _{AB} \! \parallel _{1} \le \varepsilon \hspace {.1cm}, \parallel \! \rho _{BC}-\sigma _{BC} \! \parallel _{1} \le \varepsilon \hspace {.1cm}\Longrightarrow \parallel \! \rho _{ABC}-\sigma _{ABC} \! \parallel _{}\le \varepsilon +4\varepsilon ^{\frac {1}{2}}$ . As applications, we obtain the following applications in tomography of quantum Markov chains: 1) The sample complexity of quantum Markov chain tomography, i.e., how many copies of an unknown quantum Markov chain are necessary and sufficient to determine the state, is $\tilde {\Theta }\left ({{\frac {(d_{A}^{2}+d_{C}^{2})d_{B}^{2}}{\delta }}}\right)$ , and $\tilde {\Theta }\left ({{\frac {(d_{A}^{2}+d_{C}^{2})d_{B}^{2}}{\epsilon ^{2}}}}\right)$ , where $\delta $ denotes infidelity error and $\epsilon $ denotes trace distance. 2) The sample complexity of quantum Markov chain certification, i.e., to certify whether a tripartite state equals a given quantum Markov chain $\sigma _{ABC}$ or at least $\delta $ -far from $\sigma _{ABC}$ , is ${\Theta }\left ({{\frac {(d_{A}+d_{C})d_{B}}{\delta }}}\right)$ , and ${\Theta }\left ({{\frac {(d_{A}+d_{C})d_{B}}{\epsilon ^{2}}}}\right)$ . 3) $\tilde {O}\left ({{\frac {\min \{d_{A}d_{B}^{3}d_{C}^{3},d_{A}^{3}d_{B}^{3}d_{C}\}}{\epsilon ^{2}}}}\right)$ copies of sample are sufficient to certify whether $\rho _{ABC}$ is a quantum Markov chain or $\epsilon $ -far from its Petz recovered state in trace distance. This implies that full state tomography is not always necessary for testing whether $\rho _{ABC}$ is a quantum Markov chain (equals to its Petz recovered state) or not.
期刊介绍:
The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.