Jacob B. Fine;Peter Newell;Kavin Govindarajan;Carson McGuire;Paul Paris;Gabriel Matthias;Mary Maceda;Jonathan Baxter;Kenneth Granlund;Matthew Bryant;Chris Vermillion
{"title":"Analysis and Experimental Validation of a Low-Complexity Enhanced Orientation-Based Controller for Tethered Energy-Harvesting Systems","authors":"Jacob B. Fine;Peter Newell;Kavin Govindarajan;Carson McGuire;Paul Paris;Gabriel Matthias;Mary Maceda;Jonathan Baxter;Kenneth Granlund;Matthew Bryant;Chris Vermillion","doi":"10.1109/TCST.2025.3558870","DOIUrl":null,"url":null,"abstract":"In this work, a methodology for controlling the flight of an underwater energy-harvesting kite, termed enhanced orientation-based control, is presented. This control technique is shown to perform comparably to more complex, hierarchical path-following control approaches that rely upon expensive and unreliable localization sensors while performing significantly better than simple orientation-based controllers that possess a comparable degree of complexity. The periodic closed-loop stability of a kite utilizing the proposed controller is validated in a low-order simulation framework. From there, the performance of the proposed controller is benchmarked against established control techniques via a medium-fidelity simulation environment. Finally, the efficacy of the proposed controller design is demonstrated experimentally based on two testing results on a scaled prototype kite.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"33 5","pages":"1743-1756"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10978884/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, a methodology for controlling the flight of an underwater energy-harvesting kite, termed enhanced orientation-based control, is presented. This control technique is shown to perform comparably to more complex, hierarchical path-following control approaches that rely upon expensive and unreliable localization sensors while performing significantly better than simple orientation-based controllers that possess a comparable degree of complexity. The periodic closed-loop stability of a kite utilizing the proposed controller is validated in a low-order simulation framework. From there, the performance of the proposed controller is benchmarked against established control techniques via a medium-fidelity simulation environment. Finally, the efficacy of the proposed controller design is demonstrated experimentally based on two testing results on a scaled prototype kite.
期刊介绍:
The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.