Synthesis of Ni-diamond hybrid reinforced carbon fiber/epoxy thermally conductive composites with "Rod-on-particle microstructure" via composite electrodeposition

IF 9.8 1区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Tao Jiang , Ying Wang , Lixue Xiang , Bo Tang , Shanshan Shi , Chunxia Jiang , Rongbin Li , Yifan Li , Wei Yu , Xinfeng Wu , Wenge Li , Yuantao Zhao , Kai Sun , Runhua Fan , Jinhong Yu
{"title":"Synthesis of Ni-diamond hybrid reinforced carbon fiber/epoxy thermally conductive composites with \"Rod-on-particle microstructure\" via composite electrodeposition","authors":"Tao Jiang ,&nbsp;Ying Wang ,&nbsp;Lixue Xiang ,&nbsp;Bo Tang ,&nbsp;Shanshan Shi ,&nbsp;Chunxia Jiang ,&nbsp;Rongbin Li ,&nbsp;Yifan Li ,&nbsp;Wei Yu ,&nbsp;Xinfeng Wu ,&nbsp;Wenge Li ,&nbsp;Yuantao Zhao ,&nbsp;Kai Sun ,&nbsp;Runhua Fan ,&nbsp;Jinhong Yu","doi":"10.1016/j.compscitech.2025.111351","DOIUrl":null,"url":null,"abstract":"<div><div>Epoxy-based composites, leveraging their lightweight nature and design flexibility, have emerged as critical materials for thermal management and electromagnetic shielding applications. The rapid advancement of high-functional fields have driven the demand for multifunctional epoxy composites. In this study, nickel-diamond (N-D) hybrid thermally conductive fillers were co-deposited onto polyacrylonitrile (PAN)-based carbon fiber felts via composite electrodeposition. Using Watts bath as the electrodeposition solution, we precisely controlled both current density and diamond particle concentration to achieve uniform dispersion of diamond particles and strong interfacial bonding within the carbon fiber matrix, thereby optimizing the comprehensive performance of epoxy composites. Under the optimal conditions of 2 A/dm<sup>2</sup> current density and 16 g/L diamond concentration, the fabricated epoxy composite demonstrated superior thermal conductivity (3.17 W/mK), excellent electrical conductivity (37.7 S/cm), and a significantly reduced friction coefficient (0.44). Further thermal management tests demonstrated the composite's exceptional heat-transfer performance, offering a viable solution for thermal dissipation in highly integrated electronics.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"271 ","pages":"Article 111351"},"PeriodicalIF":9.8000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353825003197","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Epoxy-based composites, leveraging their lightweight nature and design flexibility, have emerged as critical materials for thermal management and electromagnetic shielding applications. The rapid advancement of high-functional fields have driven the demand for multifunctional epoxy composites. In this study, nickel-diamond (N-D) hybrid thermally conductive fillers were co-deposited onto polyacrylonitrile (PAN)-based carbon fiber felts via composite electrodeposition. Using Watts bath as the electrodeposition solution, we precisely controlled both current density and diamond particle concentration to achieve uniform dispersion of diamond particles and strong interfacial bonding within the carbon fiber matrix, thereby optimizing the comprehensive performance of epoxy composites. Under the optimal conditions of 2 A/dm2 current density and 16 g/L diamond concentration, the fabricated epoxy composite demonstrated superior thermal conductivity (3.17 W/mK), excellent electrical conductivity (37.7 S/cm), and a significantly reduced friction coefficient (0.44). Further thermal management tests demonstrated the composite's exceptional heat-transfer performance, offering a viable solution for thermal dissipation in highly integrated electronics.

Abstract Image

复合电沉积法合成具有“颗粒上棒”微观结构的ni -金刚石杂化增强碳纤维/环氧导热复合材料
环氧基复合材料凭借其轻量化和设计灵活性,已成为热管理和电磁屏蔽应用的关键材料。高性能领域的快速发展带动了对多功能环氧复合材料的需求。在本研究中,采用复合电沉积的方法将镍-金刚石(N-D)杂化导热填料共沉积在聚丙烯腈(PAN)基碳纤维毡上。我们采用Watts浴作为电沉积溶液,精确控制电流密度和金刚石颗粒浓度,实现了金刚石颗粒在碳纤维基体内的均匀分散和强界面结合,从而优化了环氧复合材料的综合性能。在电流密度为2 A/dm2、金刚石浓度为16 g/L的最佳条件下,制备的环氧复合材料具有优异的导热系数(3.17 W/mK)、优异的电导率(37.7 S/cm)和显著降低的摩擦系数(0.44)。进一步的热管理测试证明了该复合材料卓越的传热性能,为高度集成电子器件的散热提供了可行的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Science and Technology
Composites Science and Technology 工程技术-材料科学:复合
CiteScore
16.20
自引率
9.90%
发文量
611
审稿时长
33 days
期刊介绍: Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites. Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信