First-principles DFT and BoltzTraP investigation of multifunctional properties of XNiH3 (X = Li, Na, K) perovskite hydrides: Thermoelectric and hydrogen storage potential

Ayoub Koufi , Younes Ziat , Hamza Belkhanchi
{"title":"First-principles DFT and BoltzTraP investigation of multifunctional properties of XNiH3 (X = Li, Na, K) perovskite hydrides: Thermoelectric and hydrogen storage potential","authors":"Ayoub Koufi ,&nbsp;Younes Ziat ,&nbsp;Hamza Belkhanchi","doi":"10.1016/j.nxener.2025.100402","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents a comprehensive first-principles investigation of the structural, electronic, thermoelectric, and hydrogen storage properties of XNiH<sub>3</sub> (X = Li, Na, K) perovskite-type hydrides, using density functional theory (DFT) within the generalized gradient approximation (GGA), coupled with the WIEN2k and BoltzTraP codes. The novelty of this study lies in the dual exploration of the thermoelectric and hydrogen storage functionalities of these unexplored materials, which have not yet been synthesized experimentally. Structural optimization confirms stable cubic perovskite configurations (Pm-3m), with lattice parameters increasing from Li to K. Electronic band structure and density of states analyses reveal metallic behavior across all compounds, which is favorable for both charge transport and hydrogen desorption kinetics. Thermoelectric calculations in the 300–900 K range show n-type conduction with negative Seebeck coefficients, and a maximum ZT of 0.09 for LiNiH<sub>3</sub> at 800 K, outperforming several known oxide and halide perovskites. Additionally, the calculated gravimetric hydrogen storage capacities are 4.37% (LiNiH<sub>3</sub>), 3.54% (NaNiH<sub>3</sub>), and 2.98% (KNiH<sub>3</sub>), confirming the lightweight character and storage potential of these hydrides. These results highlight the multifunctional potential of XNiH<sub>3</sub> compounds for integrated energy applications, particularly in systems combining waste heat recovery and reversible hydrogen storage. Theoretical insights provided here can serve as a foundation for future experimental validation and material design.</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"9 ","pages":"Article 100402"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X25001656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a comprehensive first-principles investigation of the structural, electronic, thermoelectric, and hydrogen storage properties of XNiH3 (X = Li, Na, K) perovskite-type hydrides, using density functional theory (DFT) within the generalized gradient approximation (GGA), coupled with the WIEN2k and BoltzTraP codes. The novelty of this study lies in the dual exploration of the thermoelectric and hydrogen storage functionalities of these unexplored materials, which have not yet been synthesized experimentally. Structural optimization confirms stable cubic perovskite configurations (Pm-3m), with lattice parameters increasing from Li to K. Electronic band structure and density of states analyses reveal metallic behavior across all compounds, which is favorable for both charge transport and hydrogen desorption kinetics. Thermoelectric calculations in the 300–900 K range show n-type conduction with negative Seebeck coefficients, and a maximum ZT of 0.09 for LiNiH3 at 800 K, outperforming several known oxide and halide perovskites. Additionally, the calculated gravimetric hydrogen storage capacities are 4.37% (LiNiH3), 3.54% (NaNiH3), and 2.98% (KNiH3), confirming the lightweight character and storage potential of these hydrides. These results highlight the multifunctional potential of XNiH3 compounds for integrated energy applications, particularly in systems combining waste heat recovery and reversible hydrogen storage. Theoretical insights provided here can serve as a foundation for future experimental validation and material design.
XNiH3 (X = Li, Na, K)钙钛矿氢化物多功能性质的第一性原理DFT和BoltzTraP研究:热电和储氢势
本文利用广义梯度近似(GGA)中的密度泛函理论(DFT),结合WIEN2k和BoltzTraP代码,对XNiH3 (X = Li, Na, K)钙钛矿型氢化物的结构、电子、热电和储氢性能进行了全面的第一性原理研究。本研究的新颖之处在于对这些尚未通过实验合成的未开发材料的热电和储氢功能进行了双重探索。结构优化证实了稳定的立方钙钛矿构型(Pm-3m),晶格参数从Li增加到k。电子能带结构和态密度分析揭示了所有化合物的金属行为,这有利于电荷传输和氢的脱附动力学。在300-900 K范围内的热电计算表明,LiNiH3在800 K时的最大ZT为0.09,优于几种已知的氧化物和卤化物钙钛矿。此外,计算出的重量储氢容量分别为4.37% (LiNiH3)、3.54% (NaNiH3)和2.98% (KNiH3),证实了这些氢化物的轻质特性和储氢潜力。这些结果突出了XNiH3化合物在综合能源应用方面的多功能潜力,特别是在结合废热回收和可逆储氢的系统中。这里提供的理论见解可以作为未来实验验证和材料设计的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信