Construction and optimization of a multienzyme cascade system centered on carbamoyl phosphate synthesis module for efficient guanidinoacetic acid production

IF 4.9 2区 化学 Q2 CHEMISTRY, PHYSICAL
Caokai Zhu , Zhentao Jiang , Qiang Zhu , Yamiao Li , Shuaibei Chu , Wenli Yu , Xinyu Lu , Wenchi Zhang , Rongzhen Zhang
{"title":"Construction and optimization of a multienzyme cascade system centered on carbamoyl phosphate synthesis module for efficient guanidinoacetic acid production","authors":"Caokai Zhu ,&nbsp;Zhentao Jiang ,&nbsp;Qiang Zhu ,&nbsp;Yamiao Li ,&nbsp;Shuaibei Chu ,&nbsp;Wenli Yu ,&nbsp;Xinyu Lu ,&nbsp;Wenchi Zhang ,&nbsp;Rongzhen Zhang","doi":"10.1016/j.mcat.2025.115442","DOIUrl":null,"url":null,"abstract":"<div><div>Guanidinoacetic acid (GAA) production is limited by insufficient arginine supply and the accumulation of the byproduct ornithine. Here, we constructed a multi-enzyme cascade centered on carbamoyl phosphate synthesis to enable efficient GAA production through arginine regeneration and byproduct recycling. A structurally guided screen of arginine: glycine amidinotransferase mutants from <em>Arabidopsis thaliana</em> identified the AtE31K/G351N variant, which exhibited a 2.5-fold increase in enzyme activity (7.4 U/mg) and elevated GAA titer from 11.1 mM in wild-type to 15.2 mM. Metabolic flux analysis revealed carbamoyl phosphate as rate-limiting; introducing glutamine synthetase and carbamate kinase enhanced carbamoyl phosphate synthesis and cycle throughput. The eight-enzyme cascade was functionally co-expressed in <em>Escherichia coli</em> BL21 (DE3) through dual-plasmid systems (pRSFDuet-1 and pETDuet-1). After process optimization, 18.35 g/L GAA (156.75 mM) was produced via 60-hour bioconversion with the molar conversion rate of arginine reaching 261.12 %. This work establishes a robust platform for industrial-scale GAA production, and presents a broadly applicable strategy for the rational design and coordinated expression of complex multi-enzyme biosynthetic systems.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"586 ","pages":"Article 115442"},"PeriodicalIF":4.9000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823125006273","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Guanidinoacetic acid (GAA) production is limited by insufficient arginine supply and the accumulation of the byproduct ornithine. Here, we constructed a multi-enzyme cascade centered on carbamoyl phosphate synthesis to enable efficient GAA production through arginine regeneration and byproduct recycling. A structurally guided screen of arginine: glycine amidinotransferase mutants from Arabidopsis thaliana identified the AtE31K/G351N variant, which exhibited a 2.5-fold increase in enzyme activity (7.4 U/mg) and elevated GAA titer from 11.1 mM in wild-type to 15.2 mM. Metabolic flux analysis revealed carbamoyl phosphate as rate-limiting; introducing glutamine synthetase and carbamate kinase enhanced carbamoyl phosphate synthesis and cycle throughput. The eight-enzyme cascade was functionally co-expressed in Escherichia coli BL21 (DE3) through dual-plasmid systems (pRSFDuet-1 and pETDuet-1). After process optimization, 18.35 g/L GAA (156.75 mM) was produced via 60-hour bioconversion with the molar conversion rate of arginine reaching 261.12 %. This work establishes a robust platform for industrial-scale GAA production, and presents a broadly applicable strategy for the rational design and coordinated expression of complex multi-enzyme biosynthetic systems.

Abstract Image

以氨甲酰磷酸合成模块为中心的多酶级联系统的构建与优化,用于高效生产胍基乙酸
胍基乙酸(GAA)的生产受到精氨酸供应不足和副产物鸟氨酸积累的限制。在这里,我们构建了一个以氨甲酰磷酸合成为中心的多酶级联,通过精氨酸再生和副产品回收实现高效的GAA生产。对拟南芥精氨酸:甘氨酸氨基转移酶突变体进行结构引导筛选,鉴定出AtE31K/G351N突变体,其酶活性增加2.5倍(7.4 U/mg), GAA滴度从野生型的11.1 mM提高到15.2 mM。代谢通量分析显示,氨甲酰磷酸是限速的;谷氨酰胺合成酶和氨基甲酸酯激酶的引入提高了磷酸氨基甲酸酯的合成和循环通量。8酶级联通过双质粒系统(pRSFDuet-1和pETDuet-1)在大肠杆菌BL21 (DE3)中功能共表达。经工艺优化,60小时生物转化可制得18.35 g/L的GAA (156.75 mM),精氨酸的摩尔转化率达到261.12%。这项工作为工业规模的GAA生产建立了强大的平台,并为复杂的多酶生物合成系统的合理设计和协调表达提供了广泛适用的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Catalysis
Molecular Catalysis Chemical Engineering-Process Chemistry and Technology
CiteScore
6.90
自引率
10.90%
发文量
700
审稿时长
40 days
期刊介绍: Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are: Heterogeneous catalysis including immobilized molecular catalysts Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis Photo- and electrochemistry Theoretical aspects of catalysis analyzed by computational methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信