Liquefaction response of reclaimed soils from effective stress analysis

IF 3.3 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL
Riwaj Dhakal, Misko Cubrinovski
{"title":"Liquefaction response of reclaimed soils from effective stress analysis","authors":"Riwaj Dhakal,&nbsp;Misko Cubrinovski","doi":"10.1016/j.sandf.2025.101677","DOIUrl":null,"url":null,"abstract":"<div><div>One-dimensional (1D) dynamic effective stress site response analysis (ESA) is performed for profiles at the port of Wellington, New Zealand (CentrePort), which contains reclamation fills comprised of gravel-sand-silt (G-S-S) mixtures and hydraulic fills. The first phase of the study realistically simulates three recent earthquake case histories while considering modelling uncertainties by using the PM4Sand and the Stress-Density constitutive models. The results illustrate possible mechanisms explaining the severity of liquefaction manifestation and soil ejecta characteristics observed in G-S-S fills through careful engineering interpretation of the response. Challenges for 1D ESA to explain complex manifestation patterns affected by two-dimensional variability in fill composition and response characteristics are illustrated for the hydraulic fills. In the second phase of analyses, ESA-based response measures are proposed to quantify the severity of the liquefaction response for a range of input seismic demands. The response characteristics show very small scatter despite using a range of different input ground motions and two soil constitutive models. Results illustrate the capability of ESA to capture details of the liquefaction response such as the similar threshold seismic intensity for liquefaction triggering of the loosely deposited fills, different maximum response of the sites reflecting the differences in the thicknesses of the fills, and the evolution of the response from triggering to maximum reflecting differences in depositional characteristics.</div></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"65 5","pages":"Article 101677"},"PeriodicalIF":3.3000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Foundations","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038080625001118","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

One-dimensional (1D) dynamic effective stress site response analysis (ESA) is performed for profiles at the port of Wellington, New Zealand (CentrePort), which contains reclamation fills comprised of gravel-sand-silt (G-S-S) mixtures and hydraulic fills. The first phase of the study realistically simulates three recent earthquake case histories while considering modelling uncertainties by using the PM4Sand and the Stress-Density constitutive models. The results illustrate possible mechanisms explaining the severity of liquefaction manifestation and soil ejecta characteristics observed in G-S-S fills through careful engineering interpretation of the response. Challenges for 1D ESA to explain complex manifestation patterns affected by two-dimensional variability in fill composition and response characteristics are illustrated for the hydraulic fills. In the second phase of analyses, ESA-based response measures are proposed to quantify the severity of the liquefaction response for a range of input seismic demands. The response characteristics show very small scatter despite using a range of different input ground motions and two soil constitutive models. Results illustrate the capability of ESA to capture details of the liquefaction response such as the similar threshold seismic intensity for liquefaction triggering of the loosely deposited fills, different maximum response of the sites reflecting the differences in the thicknesses of the fills, and the evolution of the response from triggering to maximum reflecting differences in depositional characteristics.
基于有效应力分析的复垦土液化响应
对新西兰惠灵顿港(CentrePort)的剖面进行了一维动态有效应力响应分析(ESA),该剖面包含由砾石-沙子-淤泥(G-S-S)混合物和水力填充物组成的填海填充物。研究的第一阶段在考虑PM4Sand和应力-密度本构模型建模不确定性的情况下,实际模拟了最近三次地震的历史。研究结果通过对G-S-S填充物响应的细致工程解释,阐明了解释液化表现的严重程度和土壤喷射特征的可能机制。对于水力充填体,1D ESA在解释受充填体组成和响应特性二维变化影响的复杂表现模式方面面临挑战。在分析的第二阶段,提出了基于esa的响应措施,以量化一系列输入地震需求下液化响应的严重程度。在不同的输入地震动范围和两种土本构模型下,响应特性的离散性很小。结果表明,ESA能够捕捉液化响应的细节,如松散沉积填筑体液化触发的阈值地震烈度相似,反映填筑体厚度差异的不同地点的最大响应,以及反映沉积特征差异的响应从触发到最大的演变过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soils and Foundations
Soils and Foundations 工程技术-地球科学综合
CiteScore
6.40
自引率
8.10%
发文量
99
审稿时长
5 months
期刊介绍: Soils and Foundations is one of the leading journals in the field of soil mechanics and geotechnical engineering. It is the official journal of the Japanese Geotechnical Society (JGS)., The journal publishes a variety of original research paper, technical reports, technical notes, as well as the state-of-the-art reports upon invitation by the Editor, in the fields of soil and rock mechanics, geotechnical engineering, and environmental geotechnics. Since the publication of Volume 1, No.1 issue in June 1960, Soils and Foundations will celebrate the 60th anniversary in the year of 2020. Soils and Foundations welcomes theoretical as well as practical work associated with the aforementioned field(s). Case studies that describe the original and interdisciplinary work applicable to geotechnical engineering are particularly encouraged. Discussions to each of the published articles are also welcomed in order to provide an avenue in which opinions of peers may be fed back or exchanged. In providing latest expertise on a specific topic, one issue out of six per year on average was allocated to include selected papers from the International Symposia which were held in Japan as well as overseas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信