Xiaobin Li , Meng Chen , Zhengjie Sun , Leevan Ling , Siqing Li
{"title":"Energy-conserving Kansa methods for Hamiltonian wave equations","authors":"Xiaobin Li , Meng Chen , Zhengjie Sun , Leevan Ling , Siqing Li","doi":"10.1016/j.amc.2025.129682","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce a fast, constrained meshfree solver designed specifically to inherit energy conservation (EC) in second-order time-dependent Hamiltonian wave equations. For discretization, we adopt the Kansa method, also known as the kernel-based collocation method, combined with time-stepping. This approach ensures that the critical structural feature of energy conservation is maintained over time by embedding a quadratic constraint into the definition of the numerical solution. To address the computational challenges posed by the nonlinearity in the Hamiltonian wave equations and the EC constraint, we propose a fast iterative solver based on the Newton method with successive linearization. This novel solver significantly accelerates the computation, making the method highly effective for practical applications. Numerical comparisons with the traditional secant methods highlight the competitive performance of our scheme. These results demonstrate that our method not only conserves the energy but also offers a promising new direction for solving Hamiltonian wave equations more efficiently. While we focus on the Kansa method and corresponding convergence theories in this study, the proposed solver is based solely on linear algebra techniques and has the potential to be applied to EC constrained optimization problems arising from other PDE discretization methods.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"510 ","pages":"Article 129682"},"PeriodicalIF":3.4000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325004084","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a fast, constrained meshfree solver designed specifically to inherit energy conservation (EC) in second-order time-dependent Hamiltonian wave equations. For discretization, we adopt the Kansa method, also known as the kernel-based collocation method, combined with time-stepping. This approach ensures that the critical structural feature of energy conservation is maintained over time by embedding a quadratic constraint into the definition of the numerical solution. To address the computational challenges posed by the nonlinearity in the Hamiltonian wave equations and the EC constraint, we propose a fast iterative solver based on the Newton method with successive linearization. This novel solver significantly accelerates the computation, making the method highly effective for practical applications. Numerical comparisons with the traditional secant methods highlight the competitive performance of our scheme. These results demonstrate that our method not only conserves the energy but also offers a promising new direction for solving Hamiltonian wave equations more efficiently. While we focus on the Kansa method and corresponding convergence theories in this study, the proposed solver is based solely on linear algebra techniques and has the potential to be applied to EC constrained optimization problems arising from other PDE discretization methods.
期刊介绍:
Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results.
In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.