Asymptotic analysis of the first eigenvalue for the Sturm-Liouville problems with coupled boundary conditions

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Xinyu Zhang, Jiangang Qi, Chunyan Sun
{"title":"Asymptotic analysis of the first eigenvalue for the Sturm-Liouville problems with coupled boundary conditions","authors":"Xinyu Zhang,&nbsp;Jiangang Qi,&nbsp;Chunyan Sun","doi":"10.1016/j.amc.2025.129688","DOIUrl":null,"url":null,"abstract":"<div><div>The present paper is concerned with the asymptotic behavior of the first eigenvalue on the jump set of the Sturm-Liouville eigenvalue problems with coupled boundary conditions. By transforming the original problem into two problems with separated boundary conditions, we obtain the asymptotic formula of the first eigenvalue and the first normalized eigenfunction in terms of the coefficients in the equations. Particularly, we prove that the unique zero of the first eigenfunction tends to the zero of the first eigenfunction of the corresponding Laplace problem. The results indicate that the asymptotic behavior is only related to the values of the coefficients in the neighborhood of the endpoints.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"510 ","pages":"Article 129688"},"PeriodicalIF":3.4000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009630032500414X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The present paper is concerned with the asymptotic behavior of the first eigenvalue on the jump set of the Sturm-Liouville eigenvalue problems with coupled boundary conditions. By transforming the original problem into two problems with separated boundary conditions, we obtain the asymptotic formula of the first eigenvalue and the first normalized eigenfunction in terms of the coefficients in the equations. Particularly, we prove that the unique zero of the first eigenfunction tends to the zero of the first eigenfunction of the corresponding Laplace problem. The results indicate that the asymptotic behavior is only related to the values of the coefficients in the neighborhood of the endpoints.
具有耦合边界条件的Sturm-Liouville问题第一特征值的渐近分析
本文研究了具有耦合边界条件的Sturm-Liouville特征值问题跳集上第一特征值的渐近性态。通过将原问题转化为两个边界条件分离的问题,得到了第一个特征值和第一个归一化特征函数用方程中系数表示的渐近公式。特别地,我们证明了第一个特征函数的唯一零趋向于对应拉普拉斯问题的第一个特征函数的零。结果表明,渐近性只与端点附近系数的值有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信