Fracture characteristics and process zone evolution in sandstone under freeze-thaw cycles

IF 2.3 4区 地球科学 Q4 GEOGRAPHY, PHYSICAL
MeiLu Yu , ZhongWen Wang , Ding Ma , JinJin Ge , YaTing Wang , HaoTian Xie , GenShui Wu , YaoYao Meng
{"title":"Fracture characteristics and process zone evolution in sandstone under freeze-thaw cycles","authors":"MeiLu Yu ,&nbsp;ZhongWen Wang ,&nbsp;Ding Ma ,&nbsp;JinJin Ge ,&nbsp;YaTing Wang ,&nbsp;HaoTian Xie ,&nbsp;GenShui Wu ,&nbsp;YaoYao Meng","doi":"10.1016/j.rcar.2025.03.010","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the fracture characteristics and the fracture process zone (FPZ) of mode Ⅰ fracture in sandstone, aiming to analyze the propagation behaviors of mode Ⅰ crack under different freeze-thaw cycles. Semi-circular bending tests (SCB) were conducted using different freeze-thaw cycles to evaluate mode Ⅰ fracture toughness, FPZ dynamics, and macroscopic microscopic features. Digital image correlation (DIC) and scanning electron microscopy (SEM) techniques were employed for detailed analysis. Experimental results reveal that freeze-thaw cycling leads to the widening of both preexisting and newly formed microcracks between internal particles. Under external loading, crack propagation deviates from prefabricated paths, forming serrated crack patterns. The FPZ initiates at the prefabricated crack tip and extends toward the loading end, exhibiting an arc-shaped tip shape. The FPZ length increases with loading but decreases after reaching a peak value. With additional freeze-thaw cycles, the maximum FPZ length first increases and then diminishes.</div></div>","PeriodicalId":53163,"journal":{"name":"Research in Cold and Arid Regions","volume":"17 4","pages":"Pages 217-228"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Cold and Arid Regions","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209715832500045X","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the fracture characteristics and the fracture process zone (FPZ) of mode Ⅰ fracture in sandstone, aiming to analyze the propagation behaviors of mode Ⅰ crack under different freeze-thaw cycles. Semi-circular bending tests (SCB) were conducted using different freeze-thaw cycles to evaluate mode Ⅰ fracture toughness, FPZ dynamics, and macroscopic microscopic features. Digital image correlation (DIC) and scanning electron microscopy (SEM) techniques were employed for detailed analysis. Experimental results reveal that freeze-thaw cycling leads to the widening of both preexisting and newly formed microcracks between internal particles. Under external loading, crack propagation deviates from prefabricated paths, forming serrated crack patterns. The FPZ initiates at the prefabricated crack tip and extends toward the loading end, exhibiting an arc-shaped tip shape. The FPZ length increases with loading but decreases after reaching a peak value. With additional freeze-thaw cycles, the maximum FPZ length first increases and then diminishes.
冻融循环作用下砂岩断裂特征及过程带演化
研究了砂岩中Ⅰ型裂缝的断裂特征和断裂过程区(FPZ),分析了Ⅰ型裂缝在不同冻融循环作用下的扩展行为。采用不同的冻融循环进行半圆弯曲试验(SCB),以评估模式Ⅰ断裂韧性、FPZ动力学和宏观微观特征。采用数字图像相关(DIC)和扫描电子显微镜(SEM)技术进行详细分析。实验结果表明,冻融循环会导致内部颗粒间原有微裂纹和新形成微裂纹的扩大。在外部载荷作用下,裂纹扩展偏离预制路径,形成锯齿状裂纹模式。FPZ从预制裂纹尖端开始,向加载端延伸,呈现出弧形的尖端形状。FPZ长度随载荷的增加而增加,但在达到峰值后减小。随着冻融循环次数的增加,最大FPZ长度先增大后减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信