{"title":"India's Lithium-Ion Battery Landscape Strategic Opportunities, Market Dynamics, and Innovation Pathways","authors":"S. Hemavathi","doi":"10.1002/est2.70244","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>India's lithium-ion battery (LIB) ecosystem is rapidly expanding, driven by the surge in electric vehicle (EV) adoption, renewable energy integration, and portable electronics. This review critically analyzes India's LIB market dynamics, which are projected to exceed 260 GWh annual demand by 2030, up from 3 GWh in 2020. It evaluates safety challenges, including thermal runaway, BMS failures, and temperature-induced degradation under Indian climatic and road conditions. Technological strategies such as hybrid BTMS designs, advanced chemistries (LFP, NMC), and AI-integrated BMS are discussed. The paper highlights national policies like FAME-II, PLI, and battery swapping frameworks, while assessing industrial readiness, localization efforts, and recycling gaps. Unique to this work is a comparative benchmarking of Indian battery performance, manufacturing capacity (targeted at 50 GWh by 2030), and regulatory progress. This comprehensive review provides a strategic roadmap for overcoming infrastructural, environmental, and technological barriers to support India's transition toward energy resilience and sustainable battery innovation.</p>\n </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
India's lithium-ion battery (LIB) ecosystem is rapidly expanding, driven by the surge in electric vehicle (EV) adoption, renewable energy integration, and portable electronics. This review critically analyzes India's LIB market dynamics, which are projected to exceed 260 GWh annual demand by 2030, up from 3 GWh in 2020. It evaluates safety challenges, including thermal runaway, BMS failures, and temperature-induced degradation under Indian climatic and road conditions. Technological strategies such as hybrid BTMS designs, advanced chemistries (LFP, NMC), and AI-integrated BMS are discussed. The paper highlights national policies like FAME-II, PLI, and battery swapping frameworks, while assessing industrial readiness, localization efforts, and recycling gaps. Unique to this work is a comparative benchmarking of Indian battery performance, manufacturing capacity (targeted at 50 GWh by 2030), and regulatory progress. This comprehensive review provides a strategic roadmap for overcoming infrastructural, environmental, and technological barriers to support India's transition toward energy resilience and sustainable battery innovation.