Poornima Bhatt, Preeti Rajesh, Deepak Kukkar, Ki-Hyun Kim
{"title":"Metagenomic profiling of gut microbiome: associating their role with the advancement of diabetic nephropathy","authors":"Poornima Bhatt, Preeti Rajesh, Deepak Kukkar, Ki-Hyun Kim","doi":"10.1007/s10482-025-02141-5","DOIUrl":null,"url":null,"abstract":"<div><p>Emerging evidence suggests that alterations in the gut microbiome should play a critical role in the development and progression of type 2 diabetes and its complication such as diabetic nephropathy (DN). Nevertheless, a considerable gap remains in our understanding of the interconnection between DN pathogenesis and gut microbiota arrangement. In this context, this review highlights recent research on the connection between the intestinal microbiota and DN risk, with a particular focus on the role of microbial metabolites in disease development. It also highlights recent advancements in metagenomic analyses of gut microbial communities and their potential contribution to the progression of DN. Further, it describes the challenges associated with the metagenomics-based analysis of intestinal microbiota and the advancement of therapeutics for DN. An exploration of the surveyed literature reveals the lack of any definitive correlation between gut microbiota and DN transition, even when assessed in view of widespread geographical and ethnic diversity. Future research in this domain should be conducted to address various issues like increasing the number of participants, intake patient diversity, logistical difficulties, and racial disparities. A critical assessment of these parameters will help improve our understanding of the potential contribution of gut microbiota to the DN progression.</p></div>","PeriodicalId":50746,"journal":{"name":"Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology","volume":"118 9","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10482-025-02141-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Emerging evidence suggests that alterations in the gut microbiome should play a critical role in the development and progression of type 2 diabetes and its complication such as diabetic nephropathy (DN). Nevertheless, a considerable gap remains in our understanding of the interconnection between DN pathogenesis and gut microbiota arrangement. In this context, this review highlights recent research on the connection between the intestinal microbiota and DN risk, with a particular focus on the role of microbial metabolites in disease development. It also highlights recent advancements in metagenomic analyses of gut microbial communities and their potential contribution to the progression of DN. Further, it describes the challenges associated with the metagenomics-based analysis of intestinal microbiota and the advancement of therapeutics for DN. An exploration of the surveyed literature reveals the lack of any definitive correlation between gut microbiota and DN transition, even when assessed in view of widespread geographical and ethnic diversity. Future research in this domain should be conducted to address various issues like increasing the number of participants, intake patient diversity, logistical difficulties, and racial disparities. A critical assessment of these parameters will help improve our understanding of the potential contribution of gut microbiota to the DN progression.
期刊介绍:
Antonie van Leeuwenhoek publishes papers on fundamental and applied aspects of microbiology. Topics of particular interest include: taxonomy, structure & development; biochemistry & molecular biology; physiology & metabolic studies; genetics; ecological studies; especially molecular ecology; marine microbiology; medical microbiology; molecular biological aspects of microbial pathogenesis and bioinformatics.