Marco Nale, Cristina Gatta, Daniela Addessi, Elena Benvenuti, Elio Sacco
{"title":"Buckling and post-buckling analysis of masonry walls using Virtual Elements and cohesive interfaces","authors":"Marco Nale, Cristina Gatta, Daniela Addessi, Elena Benvenuti, Elio Sacco","doi":"10.1007/s11012-025-02016-z","DOIUrl":null,"url":null,"abstract":"<div><p>This paper focuses on a novel and computationally efficient large-displacement methodology utilizing a corotational approach for the stability analysis of masonry structural elements. By virtue of the flexibility offered by the Virtual Element Method, each brick is modeled using a single Virtual Element. In contrast, the mortar layer is modeled through multiple cohesive damage-frictional elements. Furthermore, the adopted Virtual Element formulation does not require stabilization. The advantages of the proposed approach are showcased through several examples demonstrating the striking accuracy of the obtained results compared to analytical solutions. The proposed approach is used to assess the sensitivity of the load-bearing capacity and ductility of masonry walls under vertical loading to mortar tensile strength, boundary conditions, load eccentricity, and block irregularity.</p></div>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"60 7","pages":"1917 - 1937"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11012-025-02016-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper focuses on a novel and computationally efficient large-displacement methodology utilizing a corotational approach for the stability analysis of masonry structural elements. By virtue of the flexibility offered by the Virtual Element Method, each brick is modeled using a single Virtual Element. In contrast, the mortar layer is modeled through multiple cohesive damage-frictional elements. Furthermore, the adopted Virtual Element formulation does not require stabilization. The advantages of the proposed approach are showcased through several examples demonstrating the striking accuracy of the obtained results compared to analytical solutions. The proposed approach is used to assess the sensitivity of the load-bearing capacity and ductility of masonry walls under vertical loading to mortar tensile strength, boundary conditions, load eccentricity, and block irregularity.
期刊介绍:
Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics.
Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences.
Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.