{"title":"Circuit Partitioning and Transmission Cost Optimization in Distributed Quantum Circuits","authors":"Xinyu Chen;Zilu Chen;Pengcheng Zhu;Xueyun Cheng;Zhijin Guan","doi":"10.1109/TCAD.2025.3547812","DOIUrl":null,"url":null,"abstract":"Given the limitations on the number of qubits in current noisy intermediate-scale quantum (NISQ) devices, the implementation of large-scale quantum algorithms on such devices is challenging, prompting research into distributed quantum computing. This article focuses on the issue of excessive communication complexity in distributed quantum computing based on the quantum circuit model. To reduce the number of quantum state transmissions, i.e., the transmission cost, in distributed quantum circuits, a circuit partitioning method based on the quadratic unconstrained binary optimization (QUBO) model is proposed, coupled with the lookahead method for transmission cost optimization. Initially, the problem of distributed quantum circuit partitioning is transformed into a graph minimum cut problem. The QUBO model, which can be accelerated by quantum annealing algorithms, is introduced to minimize the number of quantum gates between quantum processing units (QPUs) and the transmission cost. Subsequently, the dynamic lookahead strategy for the selection of transmission qubits is proposed to optimize the transmission cost in distributed quantum circuits. Finally, through numerical simulations, the impact of different circuit partitioning indicators on the transmission cost is explored, and the proposed method is evaluated on benchmark circuits. Experimental results demonstrate that the proposed circuit partitioning method has a shorter runtime compared with current circuit partitioning methods. Additionally, the transmission cost optimized by the proposed method is significantly lower than that of current transmission cost optimization methods, achieving noticeable improvements across different numbers of partitions.","PeriodicalId":13251,"journal":{"name":"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems","volume":"44 9","pages":"3350-3362"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10909724/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Given the limitations on the number of qubits in current noisy intermediate-scale quantum (NISQ) devices, the implementation of large-scale quantum algorithms on such devices is challenging, prompting research into distributed quantum computing. This article focuses on the issue of excessive communication complexity in distributed quantum computing based on the quantum circuit model. To reduce the number of quantum state transmissions, i.e., the transmission cost, in distributed quantum circuits, a circuit partitioning method based on the quadratic unconstrained binary optimization (QUBO) model is proposed, coupled with the lookahead method for transmission cost optimization. Initially, the problem of distributed quantum circuit partitioning is transformed into a graph minimum cut problem. The QUBO model, which can be accelerated by quantum annealing algorithms, is introduced to minimize the number of quantum gates between quantum processing units (QPUs) and the transmission cost. Subsequently, the dynamic lookahead strategy for the selection of transmission qubits is proposed to optimize the transmission cost in distributed quantum circuits. Finally, through numerical simulations, the impact of different circuit partitioning indicators on the transmission cost is explored, and the proposed method is evaluated on benchmark circuits. Experimental results demonstrate that the proposed circuit partitioning method has a shorter runtime compared with current circuit partitioning methods. Additionally, the transmission cost optimized by the proposed method is significantly lower than that of current transmission cost optimization methods, achieving noticeable improvements across different numbers of partitions.
期刊介绍:
The purpose of this Transactions is to publish papers of interest to individuals in the area of computer-aided design of integrated circuits and systems composed of analog, digital, mixed-signal, optical, or microwave components. The aids include methods, models, algorithms, and man-machine interfaces for system-level, physical and logical design including: planning, synthesis, partitioning, modeling, simulation, layout, verification, testing, hardware-software co-design and documentation of integrated circuit and system designs of all complexities. Design tools and techniques for evaluating and designing integrated circuits and systems for metrics such as performance, power, reliability, testability, and security are a focus.