{"title":"Representation learning of point cloud upsampling in global and local inputs","authors":"Tongxu Zhang , Bei Wang","doi":"10.1016/j.cviu.2025.104467","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, point cloud upsampling has been widely applied in tasks such as 3D reconstruction and object recognition. This study proposed a novel framework, ReLPU, which enhances upsampling performance by explicitly learning from both global and local structural features of point clouds. Specifically, we extracted global features from uniformly segmented inputs (Average Segments) and local features from patch-based inputs of the same point cloud. These two types of features were processed through parallel autoencoders, fused, and then fed into a shared decoder for upsampling. This dual-input design improved feature completeness and cross-scale consistency, especially in sparse and noisy regions. Our framework was applied to several state-of-the-art autoencoder-based networks and validated on standard datasets. Experimental results demonstrated consistent improvements in geometric fidelity and robustness. In addition, saliency maps confirmed that parallel global-local learning significantly enhanced the interpretability and performance of point cloud upsampling.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"260 ","pages":"Article 104467"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314225001900","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, point cloud upsampling has been widely applied in tasks such as 3D reconstruction and object recognition. This study proposed a novel framework, ReLPU, which enhances upsampling performance by explicitly learning from both global and local structural features of point clouds. Specifically, we extracted global features from uniformly segmented inputs (Average Segments) and local features from patch-based inputs of the same point cloud. These two types of features were processed through parallel autoencoders, fused, and then fed into a shared decoder for upsampling. This dual-input design improved feature completeness and cross-scale consistency, especially in sparse and noisy regions. Our framework was applied to several state-of-the-art autoencoder-based networks and validated on standard datasets. Experimental results demonstrated consistent improvements in geometric fidelity and robustness. In addition, saliency maps confirmed that parallel global-local learning significantly enhanced the interpretability and performance of point cloud upsampling.
期刊介绍:
The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views.
Research Areas Include:
• Theory
• Early vision
• Data structures and representations
• Shape
• Range
• Motion
• Matching and recognition
• Architecture and languages
• Vision systems