Representation learning of point cloud upsampling in global and local inputs

IF 3.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Tongxu Zhang , Bei Wang
{"title":"Representation learning of point cloud upsampling in global and local inputs","authors":"Tongxu Zhang ,&nbsp;Bei Wang","doi":"10.1016/j.cviu.2025.104467","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, point cloud upsampling has been widely applied in tasks such as 3D reconstruction and object recognition. This study proposed a novel framework, ReLPU, which enhances upsampling performance by explicitly learning from both global and local structural features of point clouds. Specifically, we extracted global features from uniformly segmented inputs (Average Segments) and local features from patch-based inputs of the same point cloud. These two types of features were processed through parallel autoencoders, fused, and then fed into a shared decoder for upsampling. This dual-input design improved feature completeness and cross-scale consistency, especially in sparse and noisy regions. Our framework was applied to several state-of-the-art autoencoder-based networks and validated on standard datasets. Experimental results demonstrated consistent improvements in geometric fidelity and robustness. In addition, saliency maps confirmed that parallel global-local learning significantly enhanced the interpretability and performance of point cloud upsampling.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"260 ","pages":"Article 104467"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314225001900","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, point cloud upsampling has been widely applied in tasks such as 3D reconstruction and object recognition. This study proposed a novel framework, ReLPU, which enhances upsampling performance by explicitly learning from both global and local structural features of point clouds. Specifically, we extracted global features from uniformly segmented inputs (Average Segments) and local features from patch-based inputs of the same point cloud. These two types of features were processed through parallel autoencoders, fused, and then fed into a shared decoder for upsampling. This dual-input design improved feature completeness and cross-scale consistency, especially in sparse and noisy regions. Our framework was applied to several state-of-the-art autoencoder-based networks and validated on standard datasets. Experimental results demonstrated consistent improvements in geometric fidelity and robustness. In addition, saliency maps confirmed that parallel global-local learning significantly enhanced the interpretability and performance of point cloud upsampling.
全局和局部输入点云上采样的表示学习
近年来,点云上采样在三维重建和目标识别等领域得到了广泛的应用。本研究提出了一种新的框架ReLPU,通过明确学习点云的全局和局部结构特征来提高上采样性能。具体来说,我们从均匀分割的输入(平均段)中提取全局特征,从同一点云的基于补丁的输入中提取局部特征。这两种类型的特征通过并行自编码器进行处理,融合,然后送入共享解码器进行上采样。这种双输入设计提高了特征完整性和跨尺度一致性,特别是在稀疏和噪声区域。我们的框架应用于几个最先进的基于自编码器的网络,并在标准数据集上进行了验证。实验结果表明,几何保真度和鲁棒性得到了一致的改善。此外,显著性图证实并行全局-局部学习显著提高了点云上采样的可解释性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Vision and Image Understanding
Computer Vision and Image Understanding 工程技术-工程:电子与电气
CiteScore
7.80
自引率
4.40%
发文量
112
审稿时长
79 days
期刊介绍: The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views. Research Areas Include: • Theory • Early vision • Data structures and representations • Shape • Range • Motion • Matching and recognition • Architecture and languages • Vision systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信