Pressure-modulated Moiré superlattice reconstructions in twisted bilayer graphene

IF 6.9 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Xing Yang , Li Cai
{"title":"Pressure-modulated Moiré superlattice reconstructions in twisted bilayer graphene","authors":"Xing Yang ,&nbsp;Li Cai","doi":"10.1016/j.apsusc.2025.164389","DOIUrl":null,"url":null,"abstract":"<div><div>Moiré superlattice reconstructions strongly regulate the electronic and mechanical properties of twisted bilayer graphene (TBG), yet their their atomic-scale structural transformations remain insufficiently understood computationally. Here, we use molecular dynamics simulations to study reconstruction characteristics of Moiré superlattices and their evolution under pressure. Our results corroborate previous experimental findings and reveal a strong dependence of pressure-modulated reconstructions on global twist angles (<em>θ</em>) and local stacking. We demonstrate that locally reconstructed twist angles exhibit distinct domain-specific responses: AA domains show significant enhancement at small <em>θ</em>, whereas AB domains display similar enhancement at larger <em>θ</em>. In contrast, SP domains exhibit the minimal angular dependence. This domain-specific behavior arises from pressure-induced changes in interlayer potential and in-plane elastic energy redistribution, which together govern stacking stability. Furthermore, pressure intensifies in-plane deformations localized in SP domains, driving a progressive transition from stripe-like strain localization to discrete soliton-like patterns with increasing <em>θ</em>. Conversely, pressure suppresses out-of-plane corrugations and reduces their angular dependence, particularly in AA domains. Our study uncovers TBG’s nanoscale mechanical response and provides a computational approach applicable to other van der Waals heterostructures.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"714 ","pages":"Article 164389"},"PeriodicalIF":6.9000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433225021051","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Moiré superlattice reconstructions strongly regulate the electronic and mechanical properties of twisted bilayer graphene (TBG), yet their their atomic-scale structural transformations remain insufficiently understood computationally. Here, we use molecular dynamics simulations to study reconstruction characteristics of Moiré superlattices and their evolution under pressure. Our results corroborate previous experimental findings and reveal a strong dependence of pressure-modulated reconstructions on global twist angles (θ) and local stacking. We demonstrate that locally reconstructed twist angles exhibit distinct domain-specific responses: AA domains show significant enhancement at small θ, whereas AB domains display similar enhancement at larger θ. In contrast, SP domains exhibit the minimal angular dependence. This domain-specific behavior arises from pressure-induced changes in interlayer potential and in-plane elastic energy redistribution, which together govern stacking stability. Furthermore, pressure intensifies in-plane deformations localized in SP domains, driving a progressive transition from stripe-like strain localization to discrete soliton-like patterns with increasing θ. Conversely, pressure suppresses out-of-plane corrugations and reduces their angular dependence, particularly in AA domains. Our study uncovers TBG’s nanoscale mechanical response and provides a computational approach applicable to other van der Waals heterostructures.

Abstract Image

扭曲双层石墨烯中压力调制moir超晶格重建
moir超晶格重建对扭曲双层石墨烯(TBG)的电子和力学性能有很强的调节作用,但它们的原子尺度结构转变在计算上仍然没有得到充分的理解。本文采用分子动力学模拟的方法研究了moir超晶格的重建特性及其在压力下的演化。我们的结果证实了先前的实验结果,并揭示了压力调制重构对全局扭转角(θ)和局部叠加的强烈依赖。我们发现,局部重构的扭转角表现出明显的结构域特异性响应:AA结构域在小θ处表现出显著的增强,而AB结构域在大θ处表现出类似的增强。相反,SP域表现出最小的角依赖性。这种特定于区域的行为是由压力引起的层间势的变化和面内弹性能量的重新分布引起的,它们共同决定了堆积的稳定性。此外,随着θ的增加,压力加剧了SP域中的面内变形,推动了从类条纹应变局部化到离散的类孤子模式的渐进转变。相反,压力抑制面外波纹并降低其角依赖性,特别是在AA域。我们的研究揭示了TBG的纳米尺度力学响应,并提供了一种适用于其他范德华异质结构的计算方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信