Muscle forces and powers during sprint cycling at optimal cadence

IF 2.4 3区 医学 Q3 BIOPHYSICS
Matthew T.O. Worsey , Claire B. Crossley , Thomas Wackwitz , Tyler Collings , Matthew N. Bourne , Claudio Pizzolato
{"title":"Muscle forces and powers during sprint cycling at optimal cadence","authors":"Matthew T.O. Worsey ,&nbsp;Claire B. Crossley ,&nbsp;Thomas Wackwitz ,&nbsp;Tyler Collings ,&nbsp;Matthew N. Bourne ,&nbsp;Claudio Pizzolato","doi":"10.1016/j.jbiomech.2025.112890","DOIUrl":null,"url":null,"abstract":"<div><div>This study describes lower limb musculotendon unit (MTU) forces and powers during sprint cycling. Seven participants (2 female) performed maximal effort cycling at optimal cadence. Three-dimensional motion capture, pedal forces, and surface electromyography (EMG) data were input into participant-calibrated EMG-informed neuromusculoskeletal models to evaluate forces and powers produced by 18 lower-limb MTUs. In the pushing phase (10° − 170°, relative to the right crank at top dead centre), the hip adductor group generated the highest average force (1623.78 ± 980.62 N) and the vastus lateralis generated the highest average positive power (193.11 ± 153.07 W). In the pulling phase (170°-350°), the hip adductor group generated the highest average force (1140.48 ± 482.57 N) and average power (60.47 ± 68.87 W). In the transition phase (350°-10°), the vastus lateralis generated the highest average force (1432.26 ± 1169.40 N) and average power (76.98 ± 71.84 W). MTU power crank cycle-profiles were generated for each participant, highlighting differences in patterns of MTU power generation. Future work is needed to determine if targeted training based on cyclist-specific MTU force and power model outputs would lead to improved sprint cycling performance.</div></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"191 ","pages":"Article 112890"},"PeriodicalIF":2.4000,"publicationDate":"2025-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929025004026","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study describes lower limb musculotendon unit (MTU) forces and powers during sprint cycling. Seven participants (2 female) performed maximal effort cycling at optimal cadence. Three-dimensional motion capture, pedal forces, and surface electromyography (EMG) data were input into participant-calibrated EMG-informed neuromusculoskeletal models to evaluate forces and powers produced by 18 lower-limb MTUs. In the pushing phase (10° − 170°, relative to the right crank at top dead centre), the hip adductor group generated the highest average force (1623.78 ± 980.62 N) and the vastus lateralis generated the highest average positive power (193.11 ± 153.07 W). In the pulling phase (170°-350°), the hip adductor group generated the highest average force (1140.48 ± 482.57 N) and average power (60.47 ± 68.87 W). In the transition phase (350°-10°), the vastus lateralis generated the highest average force (1432.26 ± 1169.40 N) and average power (76.98 ± 71.84 W). MTU power crank cycle-profiles were generated for each participant, highlighting differences in patterns of MTU power generation. Future work is needed to determine if targeted training based on cyclist-specific MTU force and power model outputs would lead to improved sprint cycling performance.
肌肉力量和力量在最佳节奏冲刺自行车
这项研究描述了短跑自行车运动中下肢肌肉肌腱单位(MTU)的力量和力量。7名参与者(2名女性)以最佳节奏进行最大努力骑行。三维运动捕捉、踏板力和表面肌电图(EMG)数据被输入到参与者校准的肌电信息神经肌肉骨骼模型中,以评估18个下肢mtu产生的力和功率。在推压阶段(相对于右曲柄上死点10°~ 170°),髋内收肌组产生的平均正力最高(1623.78±9800.62 N),股外侧肌组产生的平均正力最高(193.11±153.07 W)。在牵引阶段(170°-350°),髋内收肌组产生的平均力(1140.48±482.57 N)和平均功率(60.47±68.87 W)最高。在过渡阶段(350°-10°),股外侧肌产生的平均力最高(1432.26±1169.40 N),平均功率最高(76.98±71.84 W)。为每个参与者生成MTU功率曲柄循环曲线,突出显示MTU发电模式的差异。未来的工作需要确定是否有针对性的训练基于骑自行车者特定的MTU力和功率模型输出将导致提高冲刺自行车的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of biomechanics
Journal of biomechanics 生物-工程:生物医学
CiteScore
5.10
自引率
4.20%
发文量
345
审稿时长
1 months
期刊介绍: The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership. Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to: -Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells. -Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions. -Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response. -Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing. -Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine. -Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction. -Molecular Biomechanics - Mechanical analyses of biomolecules. -Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints. -Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics. -Sports Biomechanics - Mechanical analyses of sports performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信