Comparative experimental study of bisphenol A degradation via sulfate radical and electron transfer mechanisms in persulfate-activated advanced oxidation processes
Jian Fan, Jia-long Li, Bing-qian Deng, Jie-xin Wang, Wen-bin An, Yu-mei Li, Peng Sun
{"title":"Comparative experimental study of bisphenol A degradation via sulfate radical and electron transfer mechanisms in persulfate-activated advanced oxidation processes","authors":"Jian Fan, Jia-long Li, Bing-qian Deng, Jie-xin Wang, Wen-bin An, Yu-mei Li, Peng Sun","doi":"10.1016/j.wse.2025.07.003","DOIUrl":null,"url":null,"abstract":"<div><div>Addressing the growing challenge of water contamination, this study comparatively evaluated a persulfate (PDS) system activated by non-radical nitrogen-doped carbon nanotubes (N-CNTs) versus a PDS system activated by radical-based iron (Fe<sup>2+</sup>), both used for the degradation of bisphenol A (BPA). The N-CNTs/PDS system, driven by the electron transfer mechanism, achieved remarkable 90.9% BPA removal within 30 min at high BPA concentrations, significantly outperforming the Fe<sup>2+</sup>/PDS system, which attained only 38.9% removal. The N-CNTs/PDS system maintained robust degradation efficiency across a wide range of BPA concentrations and exhibited a high degree of resilience in diverse water matrices. By directly abstracting electrons from BPA molecules, the N-CNTs/PDS system effectively minimised oxidant wastage and mitigated the risk of secondary pollution, ensuring efficient utilisation of active sites on N-CNTs and sustaining a high catalytic rate. The formation of the N-CNTs-PDS∗ complex significantly enhanced BPA degradation and mineralisation, thereby optimising PDS consumption. These findings highlight the unparalleled advantages of the N-CNTs/PDS system in managing complex wastewater, offering a promising and innovative solution for treating complex industrial wastewater and advancing environmental remediation efforts.</div></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"18 3","pages":"Pages 288-300"},"PeriodicalIF":4.3000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water science and engineering","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674237025000560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Addressing the growing challenge of water contamination, this study comparatively evaluated a persulfate (PDS) system activated by non-radical nitrogen-doped carbon nanotubes (N-CNTs) versus a PDS system activated by radical-based iron (Fe2+), both used for the degradation of bisphenol A (BPA). The N-CNTs/PDS system, driven by the electron transfer mechanism, achieved remarkable 90.9% BPA removal within 30 min at high BPA concentrations, significantly outperforming the Fe2+/PDS system, which attained only 38.9% removal. The N-CNTs/PDS system maintained robust degradation efficiency across a wide range of BPA concentrations and exhibited a high degree of resilience in diverse water matrices. By directly abstracting electrons from BPA molecules, the N-CNTs/PDS system effectively minimised oxidant wastage and mitigated the risk of secondary pollution, ensuring efficient utilisation of active sites on N-CNTs and sustaining a high catalytic rate. The formation of the N-CNTs-PDS∗ complex significantly enhanced BPA degradation and mineralisation, thereby optimising PDS consumption. These findings highlight the unparalleled advantages of the N-CNTs/PDS system in managing complex wastewater, offering a promising and innovative solution for treating complex industrial wastewater and advancing environmental remediation efforts.
期刊介绍:
Water Science and Engineering journal is an international, peer-reviewed research publication covering new concepts, theories, methods, and techniques related to water issues. The journal aims to publish research that helps advance the theoretical and practical understanding of water resources, aquatic environment, aquatic ecology, and water engineering, with emphases placed on the innovation and applicability of science and technology in large-scale hydropower project construction, large river and lake regulation, inter-basin water transfer, hydroelectric energy development, ecological restoration, the development of new materials, and sustainable utilization of water resources.