Ze Dong , Jun Li , Xinxin Zhao , Wei Jiang , Mingshuai Gao
{"title":"Boiler NOx emission prediction based on ensemble learning and extreme learning machine optimization","authors":"Ze Dong , Jun Li , Xinxin Zhao , Wei Jiang , Mingshuai Gao","doi":"10.1016/j.partic.2025.07.023","DOIUrl":null,"url":null,"abstract":"<div><div>The nitrogen oxides (NOx) emission measurement of selective catalytic reduction (SCR) denitrification system has issues that insufficient live processing and irregular purge readings. Therefore, establishing an accurate NOx concentration prediction model can significantly advance the timeliness and precision of NOx measurement. The study proposes a prediction method based on ensemble learning and extreme learning machine (ELM) optimization to build a NOx concentration prediction model for SCR denitrification system outlet. Firstly, to enhance the modeling precision of ELM for complex feature objects under all working conditions, the ensemble learning framework was introduced and an ensemble learning model based on ELM was designed. Secondly, to alleviate the impact of random initialization of ELM network learning parameters on the stability of modeling performance, the multi strategy improved dingo optimization algorithm (MS-DOA) is given by introducing Tent chaotic mapping, Lévy flight and adaptive t-distribution strategy to ameliorate the initial solution and position update process of population. Finally, the SCR denitrification operating data from 660 MW coal-fired power plant was opted for experimental validation. The findings demonstrate that the established SCR denitrification system outlet NOx concentration prediction model has high modeling accuracy and prediction accuracy, and provides a reliable approach for achieving accurate prediction of boiler NOx emissions.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"105 ","pages":"Pages 123-139"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S167420012500210X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The nitrogen oxides (NOx) emission measurement of selective catalytic reduction (SCR) denitrification system has issues that insufficient live processing and irregular purge readings. Therefore, establishing an accurate NOx concentration prediction model can significantly advance the timeliness and precision of NOx measurement. The study proposes a prediction method based on ensemble learning and extreme learning machine (ELM) optimization to build a NOx concentration prediction model for SCR denitrification system outlet. Firstly, to enhance the modeling precision of ELM for complex feature objects under all working conditions, the ensemble learning framework was introduced and an ensemble learning model based on ELM was designed. Secondly, to alleviate the impact of random initialization of ELM network learning parameters on the stability of modeling performance, the multi strategy improved dingo optimization algorithm (MS-DOA) is given by introducing Tent chaotic mapping, Lévy flight and adaptive t-distribution strategy to ameliorate the initial solution and position update process of population. Finally, the SCR denitrification operating data from 660 MW coal-fired power plant was opted for experimental validation. The findings demonstrate that the established SCR denitrification system outlet NOx concentration prediction model has high modeling accuracy and prediction accuracy, and provides a reliable approach for achieving accurate prediction of boiler NOx emissions.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.