Microorganisms induced bioconvection over a convectively heated rotating frame: a computational model of the blood-based MHD Casson hybrid nanofluid flow

Q1 Chemical Engineering
P. Asaigeethan , K. Loganathan , V. Karthik , S. Shageen Fathima , D. Priyadharshini , Krishna Prakash Arunachalam
{"title":"Microorganisms induced bioconvection over a convectively heated rotating frame: a computational model of the blood-based MHD Casson hybrid nanofluid flow","authors":"P. Asaigeethan ,&nbsp;K. Loganathan ,&nbsp;V. Karthik ,&nbsp;S. Shageen Fathima ,&nbsp;D. Priyadharshini ,&nbsp;Krishna Prakash Arunachalam","doi":"10.1016/j.ijft.2025.101368","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates microorganisms generated bioconvection in an MHD Casson hybrid nanofluid on a convectively heated rotating frame. The hybrid nanofluid behaves like blood because it contains <em>TiO</em><sub>2</sub> and <em>ZnO</em> nanoparticles mixed in a special fluid called a non-Newtonian Casson fluid. Their interaction greatly affects nanoparticle dispersion, thermal conductivity, and flow stability. The PDEs governing momentum, energy, concentration, and motile microbe distribution are turned into ODEs by similarity transformations. We numerically solve these modified equations in MATLAB using bvp5c. The study looks at how certain factors, like the Casson parameter, magnetic parameter, thermophoresis and Brownian motion numbers, Prandtl number, Schmidt number, and bioconvection parameters, influence the flow and movement of materials. Results show that increasing the magnetic parameter and Casson fluid index decreases fluid velocity and increases temperature gradients. Hybrid nanofluid systems have 22–28 % higher Nusselt numbers than single nanoparticle solutions. The analysis looks at important ways heat moves, including thermophoresis, Brownian motion, how viscosity affects heat, the impact of magnetic fields, and the movement of microorganisms. These discoveries can improve thermal and mass transmission in heat exchangers, biomedical devices, and industrial systems that need better heat management. The results are verified with previousley published litreature and the obtained results are optimum.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"29 ","pages":"Article 101368"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202725003143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates microorganisms generated bioconvection in an MHD Casson hybrid nanofluid on a convectively heated rotating frame. The hybrid nanofluid behaves like blood because it contains TiO2 and ZnO nanoparticles mixed in a special fluid called a non-Newtonian Casson fluid. Their interaction greatly affects nanoparticle dispersion, thermal conductivity, and flow stability. The PDEs governing momentum, energy, concentration, and motile microbe distribution are turned into ODEs by similarity transformations. We numerically solve these modified equations in MATLAB using bvp5c. The study looks at how certain factors, like the Casson parameter, magnetic parameter, thermophoresis and Brownian motion numbers, Prandtl number, Schmidt number, and bioconvection parameters, influence the flow and movement of materials. Results show that increasing the magnetic parameter and Casson fluid index decreases fluid velocity and increases temperature gradients. Hybrid nanofluid systems have 22–28 % higher Nusselt numbers than single nanoparticle solutions. The analysis looks at important ways heat moves, including thermophoresis, Brownian motion, how viscosity affects heat, the impact of magnetic fields, and the movement of microorganisms. These discoveries can improve thermal and mass transmission in heat exchangers, biomedical devices, and industrial systems that need better heat management. The results are verified with previousley published litreature and the obtained results are optimum.
微生物诱导的对流加热旋转框架上的生物对流:基于血液的MHD卡森混合纳米流体流动的计算模型
本研究在对流加热的旋转框架上研究了MHD卡森混合纳米流体中微生物产生的生物对流。这种混合纳米流体表现得像血液,因为它含有二氧化钛和氧化锌纳米颗粒,混合在一种叫做非牛顿卡森流体的特殊流体中。它们的相互作用极大地影响了纳米颗粒的分散性、导热性和流动稳定性。控制动量、能量、浓度和活动微生物分布的偏微分方程通过相似变换转化为偏微分方程。利用bvp5c在MATLAB中对这些修正方程进行了数值求解。该研究着眼于某些因素,如卡森参数、磁性参数、热游泳和布朗运动数、普朗特数、施密特数和生物对流参数,如何影响材料的流动和运动。结果表明:增大磁参量和卡森流体指数,流体速度减小,温度梯度增大;混合纳米流体系统的努塞尔数比单一纳米颗粒溶液高22 - 28%。该分析着眼于热运动的重要方式,包括热泳运动、布朗运动、粘度如何影响热量、磁场的影响以及微生物的运动。这些发现可以改善热交换器、生物医学设备和需要更好热管理的工业系统中的热和质量传递。结果与已有文献进行了验证,得到的结果是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信