Won Chae Jeong , Kun Woo Kim , Jin A Kim , Jun-Hwan Kim , Cheol Young Choi
{"title":"Depuration and post-exposure recovery of oxidative stress responses to microplastics and cadmium in Pacific oyster (Crassostrea gigas)","authors":"Won Chae Jeong , Kun Woo Kim , Jin A Kim , Jun-Hwan Kim , Cheol Young Choi","doi":"10.1016/j.cbpb.2025.111147","DOIUrl":null,"url":null,"abstract":"<div><div>Microplastics and trace metals such as cadmium (Cd) are environmental contaminants commonly co-occurring in marine ecosystems. We aimed to evaluate the impact of combined exposure of Pacific oyster (<em>Crassostrea gigas</em>) to microbeads (MBs) and Cd, focusing on the effects of the depuration process on contaminant removal and stress-related biomarkers. Pacific oysters were exposed to MBs, Cd, and their combination for 48 h, followed by a 72 h depuration process using uncontaminated seawater. We measured the levels of accumulated MBs and Cd in the whole soft tissue of the Pacific oysters to evaluate the degree of contaminant removal. Additionally, the concentrations of hydrogen peroxide were measured and the mRNA expression levels of antioxidant enzymes, metallothionein, and the apoptosis-related gene caspase-3 were analyzed in the Pacific oyster hepatopancreas tissue to evaluate oxidative stress and apoptosis. Our results indicated that Cd was eliminated more slowly than MBs, and the Pacific oysters exposed to combined MB and Cd contaminants maintained higher levels of oxidative stress-related gene expression than those exposed to individual contaminants. These findings suggest that Cd may persist longer in oyster tissues than MBs, potentially leading to prolonged toxicity in the Pacific oyster. Furthermore, in environments where both MBs and Cd are present, MBs can enhance the toxic effects of Cd through a synergistic interaction. Overall, we provide a reference for understanding the depuration and physiological responses of marine bivalves exposed to MBs and Cd.</div></div>","PeriodicalId":55236,"journal":{"name":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","volume":"280 ","pages":"Article 111147"},"PeriodicalIF":1.8000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096495925000788","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastics and trace metals such as cadmium (Cd) are environmental contaminants commonly co-occurring in marine ecosystems. We aimed to evaluate the impact of combined exposure of Pacific oyster (Crassostrea gigas) to microbeads (MBs) and Cd, focusing on the effects of the depuration process on contaminant removal and stress-related biomarkers. Pacific oysters were exposed to MBs, Cd, and their combination for 48 h, followed by a 72 h depuration process using uncontaminated seawater. We measured the levels of accumulated MBs and Cd in the whole soft tissue of the Pacific oysters to evaluate the degree of contaminant removal. Additionally, the concentrations of hydrogen peroxide were measured and the mRNA expression levels of antioxidant enzymes, metallothionein, and the apoptosis-related gene caspase-3 were analyzed in the Pacific oyster hepatopancreas tissue to evaluate oxidative stress and apoptosis. Our results indicated that Cd was eliminated more slowly than MBs, and the Pacific oysters exposed to combined MB and Cd contaminants maintained higher levels of oxidative stress-related gene expression than those exposed to individual contaminants. These findings suggest that Cd may persist longer in oyster tissues than MBs, potentially leading to prolonged toxicity in the Pacific oyster. Furthermore, in environments where both MBs and Cd are present, MBs can enhance the toxic effects of Cd through a synergistic interaction. Overall, we provide a reference for understanding the depuration and physiological responses of marine bivalves exposed to MBs and Cd.
期刊介绍:
Comparative Biochemistry & Physiology (CBP) publishes papers in comparative, environmental and evolutionary physiology.
Part B: Biochemical and Molecular Biology (CBPB), focuses on biochemical physiology, primarily bioenergetics/energy metabolism, cell biology, cellular stress responses, enzymology, intermediary metabolism, macromolecular structure and function, gene regulation, evolutionary genetics. Most studies focus on biochemical or molecular analyses that have clear ramifications for physiological processes.