Xinning Li, Lu Yang, Hangqing Wu, Liqun Wu, Ruiyuan Li
{"title":"Effect of biaxial tensile strain on the photovoltaic properties of O-doped monolayer SnSe2: a first-principles study","authors":"Xinning Li, Lu Yang, Hangqing Wu, Liqun Wu, Ruiyuan Li","doi":"10.1016/j.susc.2025.122829","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we investigate the synergistic modulation mechanism of non-metallic element O doping and biaxial tensile strain on the electronic structure and optical properties of monolayer SnSe<sub>2</sub> materials based on DFT. In particular, oxygen doping can transform SnSe<sub>2</sub> from an indirect bandgap to a direct bandgap, thus improving its photoelectric conversion efficiency. After applying biaxial tensile strains (2 %-8 %), the bandgap of the O-doped system shows a nonlinear change, which increases to 0.458 eV at 4 % strain and maintains semiconducting properties. In terms of optical properties, O- doped with strain regime significantly improves static dielectric constant (up to 4.03 at 8 % strain) and the light absorption efficiency, and the reflectance in the UV region decrease to 0.13, indicating a significant enhancement of the photovoltaic conversion performance. It has been shown that the 2D Materials semiconductor SnSe<sub>2</sub> can significantly improve the carrier mobility and light absorption efficiency of the material in the doping and stretching regime, which lays the foundation for the development of high-efficiency optoelectronic devices.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"762 ","pages":"Article 122829"},"PeriodicalIF":1.8000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602825001360","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we investigate the synergistic modulation mechanism of non-metallic element O doping and biaxial tensile strain on the electronic structure and optical properties of monolayer SnSe2 materials based on DFT. In particular, oxygen doping can transform SnSe2 from an indirect bandgap to a direct bandgap, thus improving its photoelectric conversion efficiency. After applying biaxial tensile strains (2 %-8 %), the bandgap of the O-doped system shows a nonlinear change, which increases to 0.458 eV at 4 % strain and maintains semiconducting properties. In terms of optical properties, O- doped with strain regime significantly improves static dielectric constant (up to 4.03 at 8 % strain) and the light absorption efficiency, and the reflectance in the UV region decrease to 0.13, indicating a significant enhancement of the photovoltaic conversion performance. It has been shown that the 2D Materials semiconductor SnSe2 can significantly improve the carrier mobility and light absorption efficiency of the material in the doping and stretching regime, which lays the foundation for the development of high-efficiency optoelectronic devices.
期刊介绍:
Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to:
• model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions
• nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena
• reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization
• phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization
• surface reactivity for environmental protection and pollution remediation
• interactions at surfaces of soft matter, including polymers and biomaterials.
Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.