{"title":"Influence of the structure and surface properties of CeZnxO2 on its catalytic performance in the synthesis of dimethyl carbonate from CO2 and methanol","authors":"Jingbo HUA, Jiajun PENG, Kehao LIU, Xiaoling XU, Qingmei TIAN, Yanshen LIU","doi":"10.1016/S1872-5813(25)60562-7","DOIUrl":null,"url":null,"abstract":"<div><div>A series of CeZn<sub><em>x</em></sub>O<sub>2</sub> catalysts with different Zn doping contents were prepared by a reflux method and used in the direct synthesis of dimethyl carbonate (DMC) from CO<sub>2</sub> and methanol; various characterization techniques were employed to investigate the influence of the structure and surface properties on the catalytic performance of CeZn<sub><em>x</em></sub>O<sub>2</sub> in the DMC synthesis. The results demonstrate that Zn<sup>2+</sup> is incorporated into the CeO<sub>2</sub> lattice, forming a solid solution. The Zn/Ce molar ratio can significantly modulate the Ce<sup>3+</sup>/Ce<sup>4+</sup> redox equilibrium in CeZn<sub><em>x</em></sub>O<sub>2</sub>; with an increase of the Zn doping content, the oxygen vacancy concentration initially rises and then declines. A moderate Zn doping level (Zn/Ce = 0.5) can promote the redox process of 2Ce<sup>4+</sup> + Zn<sup>0</sup> = 2Ce<sup>3+</sup> + Zn<sup>2+</sup>, resulting in the highest Ce<sup>3+</sup> proportion and a substantial increase of the oxygen vacancy concentration. In contrast, excessive Zn doping (Zn/Ce ≥ 0.75) leads to a reduction in both the Ce<sup>3+</sup> content and oxygen vacancy concentration. There is a strong positive correlation between the catalytic activity and the number of weak base sites, as well as a linear relationship with the surface oxygen vacancy concentration. In particular, CeZn<sub>0.5</sub>O<sub>2</sub> with a Zn/Ce molar ratio of 0.5 exhibits the best catalytic performance in the DMC synthesis, owing to its high oxygen vacancy concentration and well-balanced distribution of basic sites.</div></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"53 8","pages":"Pages 1243-1254"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872581325605627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
A series of CeZnxO2 catalysts with different Zn doping contents were prepared by a reflux method and used in the direct synthesis of dimethyl carbonate (DMC) from CO2 and methanol; various characterization techniques were employed to investigate the influence of the structure and surface properties on the catalytic performance of CeZnxO2 in the DMC synthesis. The results demonstrate that Zn2+ is incorporated into the CeO2 lattice, forming a solid solution. The Zn/Ce molar ratio can significantly modulate the Ce3+/Ce4+ redox equilibrium in CeZnxO2; with an increase of the Zn doping content, the oxygen vacancy concentration initially rises and then declines. A moderate Zn doping level (Zn/Ce = 0.5) can promote the redox process of 2Ce4+ + Zn0 = 2Ce3+ + Zn2+, resulting in the highest Ce3+ proportion and a substantial increase of the oxygen vacancy concentration. In contrast, excessive Zn doping (Zn/Ce ≥ 0.75) leads to a reduction in both the Ce3+ content and oxygen vacancy concentration. There is a strong positive correlation between the catalytic activity and the number of weak base sites, as well as a linear relationship with the surface oxygen vacancy concentration. In particular, CeZn0.5O2 with a Zn/Ce molar ratio of 0.5 exhibits the best catalytic performance in the DMC synthesis, owing to its high oxygen vacancy concentration and well-balanced distribution of basic sites.
期刊介绍:
Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.